• 제목/요약/키워드: 정익-동익 상호작용

검색결과 17건 처리시간 0.009초

병렬컴퓨팅을 이용한 터보기계 내부 유동장 해석 (Analysis of Turbomachinery Internal Flow Using Parallel Computing)

  • 이장준;김유신;이동호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.586-592
    • /
    • 2000
  • 터보머신 태부에 존재하는 정익 - 동익의 상호작용 유동현상을 수치모사 하는 코드를 병렬화 하였다 정익 - 동익의 상호작용을 해석하는 데에 편리하도륵 Multi-Block Grid System을 도입하여 계산영역을 형성하였고, 동익의 움직임으로 인해 발생하는 Sliding Interface부분은 Patched 알고리즘을 적용하여 해석하였다. 정익과 동익의 수를 1대 1로 단순화시켜 수치모사한 결과와 정익과 동익의 수를 실제 조건과 더 비슷하게 설정한 3대 4의 비율로 맞추어 수치모사한 결과를 비교하였다. 또한, 병렬컴퓨팅으로 인해 단축된 계산시간을 다른 연구에서의 계산시간들과 서로 비교하였다. 2차원 비정상 압축성 Navier-Stokes 방정식이 이용되었고, 난류모델링에는 K-w SST 모델링이 적응되었다. Roe의 FDS 기법을 사용하여 플럭스를 계산하였고, MUSCL 기법을 적용하여 3차의 공간정확도를 갖도록 하였다. 시간적분에는 이보성의 DP-SGS를 사용하였다. 해석결과의 분석에는 Time-averaged pressure distribution과 Pressure amplitude distribution 데이터를 사용했다.

  • PDF

저레이놀즈수 난류모델을 사용한 정익-동익 상호작용 해석 (Calculation of Rotor-Stator Interactions Using a Low Reynolds Number Turbulence Model)

  • 최창호;유정열
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1229-1239
    • /
    • 1999
  • A computational study on unsteady compressible flows has been performed by adopting a low Reynolds number $k-{\omega}$ turbulence model in conjunction with dual time stepping scheme. An explicit four-stage Runge-Kutta scheme for the Navier-Stokes equations and an approximate factorization scheme for the $k-{\omega}$ turbulence model equations are used. Computational results obtained for blade surface pressure distributions in the process of rotor-stator interaction in a turbine stage are in good agreement with extant experimental data. The effects of the wake from the stator on the boundary-layer transition over the rotor blade surface are discussed by showing that high intensity turbulence of the stator wake induces an early transition.

정익-동익 상호작용의 병렬처리해석 (Analysis of Stator-Rotor Interactions by using Parallel Computer)

  • 이장준;최준민;이동호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.111-114
    • /
    • 2004
  • CFD code that simulates stator-rotor interactions is developed applying parallel computing method. Modified Multi-Block Grid System which enhances perpendicularity in grid and is appropriate in parallel processing is introduced and Patched Algorithm is applied in sliding interface which is caused by movement of rotor. The experimental model in the turbo-machine is composed of 11 stators and 14 rotors. Analyses on two test cases which are one stator - one rotor model and three stators - four rotors model are performed. The results of the two cases have been compared with the experimental test data.

  • PDF

중첩 격자계를 이용한 동익과 정익의 상호작용이 있는 익렬 유동해석 (Numerical Simulation of Cascade Flows with Rotor-Stator Interaction Using the Multiblocked Grid)

  • 정영래;박원규;이상욱
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.163-169
    • /
    • 1999
  • The numerical procedure has been developed for simulating incompressible viscous flow around a turbine stage with rotor-stator interaction. This study solves 2-D unsteady incompressible Navier-Stokes equations on a non-orthogonal curvilinear coordinate system. The Marker-and-Cell concept is applied to efficiently solve continuity equation. To impose an accurate boundary condition, O-H multiblocked grid system is generated. O-type grid and H-type grid is generated near and outer rotor-stator The cubic-spline interpolation is applied to handle a relative motion of a rotor to the stator. Turbulent flows have been modeled by the Baldwin- Lomax turbulent model. To validate present procedure, the time averaged pressure coefficients around the rotor and stator are compared with experiment and a good agreement obtained.

  • PDF

정익과 동익의 상호작용에 의한 비정상 천이 경계층 유동의 수치해석에 관한 연구 1

  • 강동진
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.757-770
    • /
    • 1998
  • A Navier-Stokes code with a low Reynolds number k-.epsilon. turbulence model was tested to investigate its predictability for the unsteady transitional boundary layer flow due to rotor-stator interaction. A preliminary calculation with three different numbers of time steps 300, 600, and 1000 for a rotor wake passing period was carried out to see the effects of time steps on the unsteady flow and pressure fields due to rotor-stator interaction. Numerical solutions showed that unsteady pressure was much more sensitive to the number of time steps and over 600 time steps should be used to get a numerical solution independent of the number of time steps for a rotor wake passing period. The original low Reynolds number k-.epsilon. turbulence model showed very poor prediction of the unsteady transitional boundary layer flow due to rotor-stator interaction. This was due to the excessive production of turbulent kinetic energy near the leading edge. A modification suggested by Launder was incorporated and the modified model captured well the wake induced transitional strip. Present solutions also showed improved prediction over previous Euler/boundary layer solution in terms of the onset of unsteady transition and its extent.

정익과 동익의 상호작용에 의한 비정상 천이 경계층 유동의 수치해석에 관한 연구 (II) (Numerical Prediction of Unsteady Transitional Boundary Layer Flows due to Rotor-Stator Interaction(II)-Characteristics of Unsteady Transitional Boundary Layer Flow-)

  • 강동진
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.771-787
    • /
    • 1998
  • A Navier-Stokes code with a modified low Reynolds number k-.epsilon. turbulence model was used to study the unsteady transitional boundary layer flow due to rotor-stator interaction. The modification, proposed by Launder, to improve prediction of stagnation flows was incorporated to the low Reynolds number k-.epsilon. turbulence model by Fan-Lakshminarayana-Barnett. Numerical solution is shown to capture well the calmed laminar flow as well as the wake induced transitional strip due to rotor-stator interaction and shows improvement, in terms of onset of transition and its length, over previous Euler/boundary layer solution. The turbulent kinetic energy shows local maximum along the upstream rotor wake in the wake induced transitional strip and this characteristics is observed untill the end of transition. The wake induced strip also shown apparent even in the laminar sublayer as the upstream rotor wake penetrates inside the boundary layer.

축류송풍기의 동익과 정익 사이 간격변화에 따른 유동간섭에 관한 연구 (A Study of rotor-stator interaction in an axial fan)

  • 임인원;선호수;주원구;조강래
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.819-824
    • /
    • 2000
  • The flow inside an axial turbomachinery must be unsteady. Rotor-stator interaction by two blade rows influences performance, the generation of noise and vibration. So, it will be necessary to study the rotor-stator interaction for the design of an axial fan in which the axial gap between two blade rows is small. In this study, rotor-stator interaction is investigated by experimental methods. The research fan has one stage which consists of 24 rotor blades and 22 stator blades. Three-dimensional velocities measured using $45^{\circ}$ slanted hot wire probe and total pressure is measured using Kiel total pressure probe between rotor and stator with the axial 25%, 55%, 145% of chord length,. This study describes the influence of rotor-stator gap on the flow pattern, performance and loss. The efficiency curve show that the change of the rotor-stator gap make difference in the efficiency. And, the 3-dimensional velocity distribution show that the potential interaction between the rotor and the stator have a great effect on the flow field downstream of rotor, where there are wake flow. various vortices in hub region and leakage vortex in casing region etc.

  • PDF

터보 압축기 성능시험을 위한 계측기기 선정 (Instrumentation for Performance Test of Turbo Compressor)

  • 박태춘;강영석;양수석
    • 항공우주기술
    • /
    • 제7권2호
    • /
    • pp.46-52
    • /
    • 2008
  • 5MW급 발전용 가스터빈의 주요 구성품 중 압축기에서의 성능시험 및 해석을 위해 측정 파라미터와 그 파라미터를 계측하기 위한 센서류를 선정하고자 한다. 축류압축기의 경우 각 단의 케이싱에서 정압 분포를 평균하여 계측하고, 내부 유동장에서 Kiel 온도관을 이용하여 전압 및 전온도 분포를 계측한다. 원심압축기의 경우 임펠러 출구의 허브면과 팁면에서의 정압 분포는 일반적으로 상당한 차이가 존재하므로 각 면에서 정압을 측정하여 평균하고, 디퓨저 내부와 디스월러 내부에서의 정압 분포를 계측하기 위해 한 피치에서 5개의 유선을 따라 10 곳에서 정압을 측정하고자 한다. 또한 압축기 내 유동특성과 동익-정익간의 상호작용을 고찰하기 위해 5공 피토관을 이용하여 내부 상세유동을 계측한다.

  • PDF

로터-스테이터 상호작용을 고려한 3차원 유동 해석 (3-D Incompressible Viscous Flow Analysis Around A Rotor-Stator with Rotor-Stator Interaction)

  • 김경한;정영래;박원규;이상욱
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.78-83
    • /
    • 2000
  • An iterative time marching procedure for solving incompressible internal flow has been applied to the flow around a rotor-stator. This procedure solves three-dimensional incompressible Reynolds-averaged Navier-Stokes equation on a moving, time-deforming, non-orthogonal body-fitted grid using second-order accurate schemes for the time derivatives and third/second-order accurate schemes for the spatial derivatives. To handle rotationg geometry, the multiblock technique is applied and the overall flow domain is subdivided into two blocks. In each block, a grid is generated and flowfield is solved independently of the other blocks. The boundary data for each block is provided by the neighboring blocks using bilinear interpolation technique.

  • PDF

1단 축류 터빈의 비정상 내부유동특성에 관한 2차원 해석(I) (Two-Dimensional Analysis of Unsteady Flow through One Stage of Axial Turbine (I))

  • 박준염;엄인식;백제현
    • 대한기계학회논문집B
    • /
    • 제23권11호
    • /
    • pp.1371-1378
    • /
    • 1999
  • Flow through turbomachinery has a very complex structure and Is Intrinsically unsteady. In addition, trend to highly loaded turbomachinery makes the flow extremely complex due to the interaction between rotor and stator. In this study, flows through UTRC LSRR turbine are numerically analyzed using 2 dimensional Navier-Stokes equations. The convective terms of the governing equations are discretized using the Van-Leer's FVS(Flux vector splitting) with an upwind TVD scheme. The conventional central differencing is used to discretize the diffusion terms on the finite volume. The accurate unsteady motion is achieved by using a 2nd order accurate, 3-point Euler implicit scheme. The quasi-conservative zonal scheme is used for calculating the flow variables on the zonal interface between the rotor and stator. The axial gap between stator and rotor has been configured in two variations, 15% and 65% of average chord length. The analysis program is validated using experimental results and the effect of axial gap is examined. The numerical analysis results are presented by time averaged pressure coefficient and pressure magnitude coefficient and compared with experimental results.