• Title/Summary/Keyword: 정량 연관규칙

Search Result 18, Processing Time 0.03 seconds

Mining Generalized Fuzzy Quantitative Association Rules with Fuzzy Generalization Hierarchies (퍼지 일반화 계층을 이용한 일반화된 퍼지 정량 연관규칙 마이닝)

  • 한상훈;손봉기;이건명
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.8-11
    • /
    • 2001
  • 연관규칙 마이닝은 트랜잭션 데이터를 이루고 있는 항목간의 잠재적인 의존관계를 발견하는 데이터 마이닝의 한 분야이다. 정량 연관규칙이란 부류적 속성과 정량적 속성을 모두 포함한 연관규칙이다. 정량 연관규칙 마아닝을 위한 퍼지 기술의 응용, 정량 연관규칙 마이닝을 위한 일반화된 연관규칙 마이닝, 사용자의 관심도를 반영한 중요도 가중치가 있는 연관규칙 마이닝 등에 대한 연구가 이루어져 왔다. 이 논문에서는 중요도 가중치가 있는 일반화된 퍼지 정량 연관규칙 마이닝의 새로운 방법을 제안한다. 이 방법은 부류적 속성의 퍼지 개념 계층과 정량적 속성의 퍼지 언어항 일반화 계층을 일반화된 추출하기 위해 이용한다. 이것은 속성들의 수준별 일반화 계층과 속성의 중요도 가중치를 이용함으로써 사용자가 보다 융통성 있는 연관규칙을 마이닝할 수 있게 해준다.

  • PDF

Mining Quantitative Association Rules using Commercial Data Mining Tools (상용 데이타 마이닝 도구를 사용한 정량적 연관규칙 마이닝)

  • Kang, Gong-Mi;Moon, Yang-Sae;Choi, Hun-Young;Kim, Jin-Ho
    • Journal of KIISE:Databases
    • /
    • v.35 no.2
    • /
    • pp.97-111
    • /
    • 2008
  • Commercial data mining tools basically support binary attributes only in mining association rules, that is, they can mine binary association rules only. In general, however. transaction databases contain not only binary attributes but also quantitative attributes. Thus, in this paper we propose a systematic approach to mine quantitative association rules---association rules which contain quantitative attributes---using commercial mining tools. To achieve this goal, we first propose an overall working framework that mines quantitative association rules based on commercial mining tools. The proposed framework consists of two steps: 1) a pre-processing step which converts quantitative attributes into binary attributes and 2) a post-processing step which reconverts binary association rules into quantitative association rules. As the pre-processing step, we present the concept of domain partition, and based on the domain partition, we formally redefine the previous bipartition and multi-partition techniques, which are mean-based or median-based techniques for bipartition, and are equi-width or equi-depth techniques for multi-partition. These previous partition techniques, however, have the problem of not considering distribution characteristics of attribute values. To solve this problem, in this paper we propose an intuitive partition technique, named standard deviation minimization. In our standard deviation minimization, adjacent attributes are included in the same partition if the change of their standard deviations is small, but they are divided into different partitions if the change is large. We also propose the post-processing step that integrates binary association rules and reconverts them into the corresponding quantitative rules. Through extensive experiments, we argue that our framework works correctly, and we show that our standard deviation minimization is superior to other partition techniques. According to these results, we believe that our framework is practically applicable for naive users to mine quantitative association rules using commercial data mining tools.

Performance Estimation of Fuzzr Quantitative Association Rules and Crisp Quantitative Association Rules (퍼지 연관규칙과 연관규칙의 성능 평가)

  • 손영경;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.235-237
    • /
    • 2002
  • 연관규칙(association rule)이란 데이터 베이스에 존재하는 속성들 사이에 유사성 또는 패턴을 기술하는 것으로, 사용자에게 데이터에 관한 유용한 조보를 줄 수 있다. 그러나, 지금가지의 연관규칙은 이진 (boolean) 데이터 베이스에 존재하는 연관규칙의 발견에 대해서 주로 연구되어 왔으며, 정량적(수치적, quantitative) 속성을 갖는 데이터에 대한 연관규칙의 연구는 미비하였다. 그 이유는 정량적 속성을 갖는 데이터를 기호적(nominal) 속성값으로 바꾼 후 연관규칙 보다 성능이 우수함을 보이고 있다. 또한 본 논문에서는 퍼지 연관규칙에서 소속함수(항목, 아이템, 속성값)의 모양과 개수를 데이터 분포에 대한 통계적 특성을 나타내는 히스토그램을 이용하여 소속함수를 자동 생성하는 효율적인 연관규칙 추출방법을 제안한다

  • PDF

Intelligent Query Analysis using Fuzzy Association Rule (퍼지 연관규칙을 이용한 지능적 질의해석)

  • Kim, Mi-Hye
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2214-2218
    • /
    • 2010
  • Association rule is one of meaning and useful extraction methods from large amounts of data, and furnish useful information to user for data describing a pattern or similarity among attributes in database. Association rule have been studied about existence and nonexistence rule in boolean database. In this paper, we propose an intelligent query system using fuzzy association rule by extraction association rule changing a quantitative attribute data to a nominal attribute value.

Processing Multi-Valued Attributes in Association Rules for Data Mining (데이터 마이닝을 위한 연관규칙의 다중 값 속성 처리방법)

  • 김산성;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.340-342
    • /
    • 2002
  • 다중 값이란 속성 값이 집합인 것을 말한다. 즉, 관계형 데이터베이스에서 자료 유형이 집합인 속성을 의미한다. 이러한 다중 값 속성 처리는 기존 데이터마이닝 기술 자체로는 처리한 수 없으며 후처리나 선처리 과정을 이용하여 처리하고 있다. 전처리나 후처리 과정을 통해 처리할 경우 수행과장에 있어 많은 시간이 소요되고 혹은 타당하지 않은 규칙이 생성되는 문제점을 가지고 있다. 특히 연관화 기법 특성상 분석하고자 할 항목이 증가할수록 연관성의 수가 지수(exponential)단위이기 때문에 이를 해결하는데는 상당한 어려움이 따르게 된다. 본 논문에서는 관계형 데이터베이스 테이블 구조에서 데이터 마이닝의 수행을 위한 전처리나 후처리의 과정을 고려하지 않음으로 위에서 언급된 문제점들을 해결하고자 한다. 특히 데이터 변환 작업 없이 정량적(Quantitative)연관 규칙과 연관 규칙(Market Basket Analysis)의 혼합 형태의 규칙을 생성할 수 있게끔 알고리즘을 확장하여 보다 효율적인 규칙이 생성될 수 있도록 한다. 마지막으로 Each Movie 데이터를 사용하여 확장한 알고리즘의 다중 값 속성 처리 방법의 효율성과 타탕성을 검증한다.

  • PDF

Affinity Analysis Between Factors of Fatal Occupational Accidents in Construction Using Data Mining Techniques (데이터마이닝 기법을 활용한 건설 중대 재해요인 간 연관성 분석)

  • Lim, Jiseon;Han, Sanguk;Kang, Youngcheol;Kang, Sanghyeok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.5
    • /
    • pp.29-38
    • /
    • 2021
  • Governments and companies are trying to reduce occupational accidents in the construction industry; however, the number of disasters are not decreasing significantly. This study aims to identify the correlation between factors affecting construction disasters quantitatively. To this end, 1,197 cases of serious disasters provided by Korea Occupational Safety and Health Administration (KOSHA) were analyzed using affinity analysis, one of the data mining techniques. The data from KOSHA were preprocessed and analyzed with variables of accident type, project type, activity type, original cause materials, sensory temperature, time of the accident, and fall height, and the association rules were derived for fall accidents and the others. For fall accidents, 64 association rules with lift ratios of 1.38 or greater were derived, and for the other accidents, 59 association rules with lift ratios of 1.54 or greater were derived. After analyzing the derived association rules focusing on the relationship among accident factors, this study presented the significance of applying the affinity analysis to address the study's limitations. The significance of this study can be found in that the correlation among factors affecting construction accidents is presented quantitatively.

Weighted Association Rule Discovery for Item Groups with Different Properties (상이한 특성을 갖는 아이템 그룹에 대한 가중 연관 규칙 탐사)

  • 김정자;정희택
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1284-1290
    • /
    • 2004
  • In market-basket analysis, weighted association rule(WAR) discovery can mine the rules which include more beneficial information by reflecting item importance for special products. However, when items are divided into more than one group and item importance for each group must be measured by different measurement or separately, we cannot directly apply traditional weighted association rule discovery. To solve this problem, we propose a novel methodology to discovery the weighted association rule in this paper In this methodology, the items should be first divided into sub-groups according to the properties of the items, and the item importance is defined or calculated only with the items enclosed to the sub-group. Our algorithm makes qualitative evaluation for network risk assessment possible by generating risk rule set for risk factor using network sorority data, and quantitative evaluation possible by calculating risk value using statistical factors such as weight applied in rule generation. And, It can be widely used for new model of more delicate analysis in market-basket database in which the data items are distinctly separated.

A R&D strategies for development using structured association map (구조화된 연관맵을 이용한 연구개발 전략 수립)

  • Song, Wonho;Lee, Junseok;Park, Sangsung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.190-195
    • /
    • 2016
  • A technology is continuously developed in a rapidly changing global market. A company requires an appropriate R&D strategy for adapting to this environment. That is, the technologies owned by the company needs to be thoroughly analyzed to improve its competitiveness. Alternatively, technology classification using IPC codes is carried out recently in an objective and quantitative way. International Patent Classification, IPC is an internationally specified classification system, so it is helpful to conduct an objective and quantitative patent analysis of technology. In this study, all of the patents owned by company C are investigated and a matrix representing IPC codes of each patent is created. Then, a structured association map of the patents is made through association rules mining based on Confidence. The association map can be used to inspect the current situation of a company about patents. It also allows highly associated technologies to be clustered. Using the association map, this study analyzes the technologies of company C and how it changes with time. The strategy for future technologies is established based on the result.

Analysis on Relation between Rehabilitation Training Movement and Muscle Activation using Weighted Association Rule Discovery (가중연관규칙 탐사를 이용한 재활훈련운동과 근육 활성의 연관성 분석)

  • Lee, Ah-Reum;Piao, Youn-Jun;Kwon, Tae-Kyu;Kim, Jung-Ja
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.6
    • /
    • pp.7-17
    • /
    • 2009
  • The precise analysis of exercise data for designing an effective rehabilitation system is very important as a feedback for planing the next exercising step. Many subjective and reliable research outcomes that were obtained by analysis and evaluation for the human motor ability by various methods of biomechanical experiments have been introduced. Most of them include quantitative analysis based on basic statistical methods, which are not practical enough for application to real clinical problems. In this situation, data mining technology can be a promising approach for clinical decision support system by discovering meaningful hidden rules and patterns from large volume of data obtained from the problem domain. In this research, in order to find relational rules between posture training type and muscle activation pattern, we investigated an application of the WAR(Weishted Association Rule) to the biomechanical data obtained mainly for evaluation of postural control ability. The discovered rules can be used as a quantitative prior knowledge for expert's decision making for rehabilitation plan. The discovered rules can be used as a more qualitative and useful priori knowledge for the rehabilitation and clinical expert's decision-making, and as a index for planning an optimal rehabilitation exercise model for a patient.

Analysis of Educational Issues through Topic Modeling of National Petitions Text (국민청원글의 토픽 모델링을 통한 교육이슈 분석)

  • Shim, Jaekwoun
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.4
    • /
    • pp.633-640
    • /
    • 2021
  • Education related issues are social problems in which various groups and situations are intricately linked to each other. It is difficult to find issues by analyzing social phenomena related to education. Korean based text analysis can be analyzed in a quantitative. With the development of text analysis techniques, research results have been recently achieved, and it can be fully utilized to derive educational issues from text data in Korean. In this study, petition articles in the field of childcare/education were collected on the online-board of the Blue House National Petition website, and text analysis was used to derive issues in the education world. The analysis derived 6 topics through Latent Dirichlet Allocation(LDA) among topic modeling techniques. The association rules of major keywords were analyzed and visualized as graphs. In addition to deriving educational issues through the existing questionnaire, it can provide implications for future research directions and policies in that issues can be sufficiently discovered through text-based analysis methods.