• Title/Summary/Keyword: 전해제련로

Search Result 43, Processing Time 0.024 seconds

Scaleup of Electrolytic Reactors in Pyroprocessing (Pyroprocessing 공정에 사용되는 전해반응장치의 규모 확대)

  • Yoo, Jae-Hyung;Kim, Jeong-Guk;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.4
    • /
    • pp.237-242
    • /
    • 2009
  • In the pyroprocessing of spent nuclear fuels, fuel materials are recovered by electrochemical reactions on the surface of electrodes as well as stirring the electrolyte in electrolytic cells such as electrorefiner, electroreducer and electrowinner. The system with this equipment should first be scaled-up in order to commercialize the pyroprocessing. So in this study, the scale-up for those electrolytic cells was studied to design a large-scale system which can be employed in a commercial process in the future. Basically the dimensions of both electrolytic cells and electrodes should be enlarged on the basis of the geometrical similarity. Then the criterion of constant power input per unit volume, characterizing the fluid behavior in the cells, was introduced in this study and a calculation process based on trial-and-error methode was derived, which makes it possible to seek a proper speed of agitation in the electrolytic cells. Consequently examples of scale-up for an arbitrary small scale system were shown when the criterion of constant power input per unit volume and another criterion of constant impeller tip speed were respectively applied.

  • PDF

A Study on the Fabrication of Uranium-Cadmium Alloy and its Distillation Behavior (우라늄-카드뮴 합금의 제조 및 증류거동에 대한 연구)

  • Kim, Ji-Yong;Ahn, Do-Hee;Kim, Kwang-Rag;Paek, Seung-Woo;Kim, Si-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.261-267
    • /
    • 2010
  • The pyrometallurgical nuclear fuel recycle process, called pyroprocessing, has been known as a promising nuclear fuel recycling technology. Pyroprocessing technology is crucial to advanced nuclear systems due to increased nuclear proliferation resistance and economic efficiency. The basic concept of pyroprocessing is group actinide recovery, which enhances the nuclear proliferation resistance significantly. One of the key steps in pyroprocessing is "electrowinning" which recovers group actinides with lanthanide from the spent nuclear fuels. In this study, a vertical cadmium distiller was manufactured. The evaporation rate of pure cadmium in vertical cadmium distiller varied from 12.3 to $40.8g/cm^2/h$ within a temperature range of 773 923 K and pressure below 0.01 torr. Uranium - cadmium alloy was fabricated by electrolysis using liquid cadmium cathode in a high purity argon atmosphere glove box. The distillation behavior of pure cadmium and cadmium in uranium - cadmium alloy was investigated. The distillation behavior of cadmium from this study could be used to develop an actinide recovery process from a liquid cadmium cathode in a cadmium distiller.

A study on the electrodeposition of uranium using a liquid cadmium cathode at 440℃ and 500℃ (440℃와 500℃에서 액체카드뮴음극을 이용한 우라늄 전착에 관한 연구)

  • Yoon, Jong-Ho;Kim, Si-Hyung;Kim, Gha-Young;Kim, Tack-Jin;Ahn, Do-Hee;Paek, Seungwoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.3
    • /
    • pp.199-206
    • /
    • 2013
  • Electrowinning process in pyroprocessing recovers U (uranium) and TRU (Trans Uranium) elements simultaneously from spent fuels using a liquid cadmium cathode (LCC). When the solubility limit of U deposits over 2.35wt% in Cd, U dendrites were formed on the LCC surface during the electrodeposition at $500^{\circ}C$. Due to the high surface area of dendritic U, the deposits were not submerged into the liquid cadmium pool but grow out of the LCC crucible. Since the U dendrites act as a solid cathode, it prevents the co-deposition of U and TRUs. In this study, the electrodeposition of U onto a LCC was carried out at 440 and $500^{\circ}C$ to compare the morphology and component of U deposits. The U deposits at $440^{\circ}C$ have a specific shape and were stacked regularly at the center of the LCC pool, while the U dendrites (i.e., ${\alpha}$-phase) at $500^{\circ}C$ were grow out of the LCC crucible. Through the microscopic observation and XRD analysis, the electrodeposits at $440^{\circ}C$, which have a round shape, were identified as an intermetallic compound such as $UCd_{11}$. It can be concluded that the LCC electrowinning operation at $440^{\circ}C$ achieves the co-recovery of U and TRU without the formation of U dendrites.

Comparison of Two-Types Compositions of Mixed Salts in Fused Salt Electrolysis of Magnesium (마그네슘의 용융염전해시(熔融鹽電解時) 두 가지 염욕조성(鹽浴組成)의 비교실험)

  • Park, Hyung-Kyu;Park, Jin-Tae;Choi, Young-Yoon
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.32-36
    • /
    • 2006
  • Magnesium has been used as light and functional material, and its demand is increasing as a material for automobile engine and for mobile phone or notebook PC case. Fused salt electrolysis and thermal reduction are regarded as main methods for the extraction of magnesium, and choice for the method is firstly according to raw material. In this study, magnesium metal is obtained by an electrolysis of magnesium chloride. Two types of fused salt mixtures were used as electrolyte and electrolyzed at 7V with a graphite anode having the same depth, and their results were compared with each other. A mixed salt of $KCl/NaCl/MgCl_2$ was the more effective than $KCl/NaCl/CaCl_2/CaF_2/MgCl_2$ in current efficiency through the experiments at $760^{\circ}C$. Purity of the prepared magnesium metal was above 98%. Some basic data for scale-up of the magnesium electrolysis equipment, which would be necessary for a commercialization, could be obtained.

Patent Analysis for Pyroprocessing of Spent Nuclear Fuels (사용후핵연료 파이로처리기술의 특허 동향 분석)

  • Yoo, Jae-Hyung;Kim, Jung-Kuk;Lee, Han-Soo;Seo, In-Seok;Kim, Eun-Ka
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.4
    • /
    • pp.247-258
    • /
    • 2011
  • Analysis of foreign and domestic patents for pyroprocessing technology of spent nuclear fuels was carried out in this study. The current status of pyroprocessing technology development in such countries as Korea, USA, Japan and EU was analyzed by classifying the patents for 1975 through 2009 according to registration country, assignee, calendar year and technology area. The major assignees' activity indices were compared in order to find out whether there is any concentrated area of technical details. Technology competitiveness of the countries was also investigated from the information of patent citation number and family size. Furthermore, some essential unit technologies required for the commercialization of pyroprocessing were derived and examined in the aspect of the state of art as well as the trend of technology development.

Production Technology of Titanium by Kroll Process (Kroll법에 의한 타이타늄의 제조기술)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.29 no.4
    • /
    • pp.3-14
    • /
    • 2020
  • Titanium sponge is industrially produced by the Kroll process. In order to understand the importance of the emerging smelting and recycling process, it is necessary to review the conventional production process of titanium. Therefore this paper provides a general overview of the conventional titanium manufacturing system mainly by the Kroll process. The Kroll process can be divided into four sub-processes as follows: (1) Chlorination of raw TiO2 with coke, by the fluidized bed chlorination or molten salt chlorination (2) Magnesium reduction of TiCl4 and vacuum distillation of MgCl2 and Mg by reverse U-type or I-type with reduction-distillation integrated retorts (3) Electrolysis process of MgCl2 by monopolar cells or multipolar cells to electrolyze into chlorine gas and Mg. (4) Crushing and melting process in which sponge titanium is crushed and then melted in a vacuum arc furnace or an electron beam furnace Although the apparatus and procedures have improved over the past 80 years, the Kroll process is the costly and time-consuming batch operation for the reduction of TiCl4 and the separation of MgCl2.

Use of Li-K-Cd Alloy to Remove MCl3 in LiCl-KCl Eutectic Salt (Li-K-Cd 합금을 이용한 LiCl-KCl 용융염에서 금속염화물의 제거)

  • Kim, Gha-Young;Kim, Tack-Jin;Jang, Junhyuk;Kim, Si-Hyung;Lee, Chang Hwa;Lee, Sung-Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.309-313
    • /
    • 2018
  • In this study, we prepared Li-K-Cd alloy, which meets the requirement of eutectic ratio of Li:K, to maintain the operating temperature of the drawdown process at $500^{\circ}C$ and to achieve the reuse of LiCl-KCl molten salt. The prepared Li-K-Cd alloys were added to LiCl-KCl salt bearing U and Nd at $500^{\circ}C$ to investigate the removal of $UCl_3$ in the salt. The reduction of $UCl_3$ in the salt was examined by measuring the OCP value of salt and analyzing the salt composition by ICP-OES. Reduction was also visually confirmed by change of salt color from dark purple to white. The experimental results reveal that the prepared Li-K-Cd alloy has reductive extractability for $UCl_3$ in salt. By improving the preparation method, the Li-K-Cd alloy can be applied to the drawdown process.

Recycling of Copper Scrap (동스크랩의 리사이클링)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.28 no.3
    • /
    • pp.3-14
    • /
    • 2019
  • Copper is one of the first metals utilized by humankind about 11,500 years ago. But copper is not plentiful metallic element in the earth's crust. Copper has a high thermal and electric conductivity and is relatively corrosion resistant. In principle copper is virtually 100 % recyclable as an element without loss of quality. The recycling of copper scrap reduces the energy consumption and environmental burden, comparing to the primary metal production. Currently, approximately 30% of the global copper supply provides by recycling. Copper scrap is smelted in primary and secondary smelter. Type of furnace and process steps depend on the quality and grade of scrap. Depending on copper content of the secondary raw material, refining is required, which is usually done through electrorefining. This work provides an overview of the primary copper production and recycling process.

Recovery of Zirconium from Spent Pickling Acid through Precipitation Using BaF2 and Electrowinning in Fluoride Molten Salt (BaF2 침전 및 불화물 용융염 전해 제련을 통한 폐 산세액 내 지르코늄 회수)

  • Han, Seul Ki;Nersisyan, Hayk H.;Lee, Young Jun;Choi, Jeong Hun;Lee, Jong Hyeon
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.681-687
    • /
    • 2016
  • Zirconium(Zr) nuclear fuel cladding tubes are made using a three-time pilgering and annealing process. In order to remove the oxidized layer and impurities on the surface of the tube, a pickling process is required. Zr is dissolved in HF and $HNO_3$ mixed acid during the process and pickling waste acid, including dissolved Zr, is totally discarded after being neutralized. In this study, the waste acid was recycled by adding $BaF_2$, which reacted with the Zr ion involved in the waste acid; $Ba_2ZrF_8$ was subsequently precipitated due to its low solubility in water. It is very difficult to extract zirconium from the as-recovered $Ba_2ZrF_8$ because its melting temperature is $1031^{\circ}C$. Hence, we tried to recover Zr using an electrowinning process with a low temperature molten salt compound that was fabricated by adding $ZrF_4$ to $Ba_2ZrF_8$ to decrease the melting point. Change of the Zr redox potential was observed using cyclic voltammetry; the voltage change of the cell was observed by polarization and chronopotentiometry. The structure of the electrodeposited Zr was analyzed and the electrodeposition characteristics were also evaluated.

Separation of Zr metal from $LiF-BeF_2-ZrF_4$ Molten Salt by Electrowinning (Electrowinning에 의한 $LiF-BeF_2-ZrF_4$ 용융염에서 Zr 금속 분리)

  • Woo, Mun-Sik;Yoo, Jae-Hyung;Kwon, Soo-Han
    • Analytical Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.759-765
    • /
    • 2000
  • A study on the separation of Zr metal from $LiF-BeF_2-ZrF_4$ (67-27-6 mol%) molten salt was carried out using electrowinning. The decomposition potentials of the $LiF-BeF_2$ (72-28 mol%) and the $LiF-BeF_2-ZrF_4$ (67-27-6 mol%) molten salts were measured to be -1.55 and -1.35 volt, respectively. The Zr separation voltage from the salt were found to be in a range of -1.4 -1.5 volt. As increasing applied current, the deposition of molten salt on a cathode increases but the current efficiency decreases. In addition, the deposition and current efficiency decreases with increasing temperature.

  • PDF