DOI QR코드

DOI QR Code

Production Technology of Titanium by Kroll Process

Kroll법에 의한 타이타늄의 제조기술

  • Sohn, Ho-Sang (School of Materials Science and Engineering, Kyungpook National University)
  • Received : 2020.05.20
  • Accepted : 2020.07.17
  • Published : 2020.08.28

Abstract

Titanium sponge is industrially produced by the Kroll process. In order to understand the importance of the emerging smelting and recycling process, it is necessary to review the conventional production process of titanium. Therefore this paper provides a general overview of the conventional titanium manufacturing system mainly by the Kroll process. The Kroll process can be divided into four sub-processes as follows: (1) Chlorination of raw TiO2 with coke, by the fluidized bed chlorination or molten salt chlorination (2) Magnesium reduction of TiCl4 and vacuum distillation of MgCl2 and Mg by reverse U-type or I-type with reduction-distillation integrated retorts (3) Electrolysis process of MgCl2 by monopolar cells or multipolar cells to electrolyze into chlorine gas and Mg. (4) Crushing and melting process in which sponge titanium is crushed and then melted in a vacuum arc furnace or an electron beam furnace Although the apparatus and procedures have improved over the past 80 years, the Kroll process is the costly and time-consuming batch operation for the reduction of TiCl4 and the separation of MgCl2.

현재 타이타늄 스펀지는 Kroll법에 의해 만들어지고 있다. 타이타늄의 새로운 제련법과 리사이클링 기술의 중요성을 이해하기 위해서는 기존의 타이타늄 제조기술에 대한 검토가 필요하므로 본 논문에서는 기존의 Kroll법을 중심으로 한 타이타늄 제조기술에 대해 고찰하였다. Kroll법은 아래와 같이 크게 네 가지 공정으로 구분할 수 있다. (1) 유동 염화법이나 용융염 염화법에 의한 TiO2의 염화 공정 (2) 반응기 결합방법에 따른 역U자형이나 I자형을 이용한 TiCl4의 Mg에 의한 환원과 Mg와 MgCl2의 증류 (3) 단극형이나 복극형 전해조에 의한 반응 부산물인 MgCl2의 전해와 Mg과 Cl2의 생성 (4) 스펀지 타이타늄의 분쇄와 VAR이나 EBM에 의한 용해 및 잉곳 제조 지난 80년 동안 제련공정이 많이 개선되었지만, Kroll법은 TiCl4의 환원과 MgCl2의 분리를 위한 비용이 많이 들고 시간이 많이 걸리는 회분식 조업이라는 문제점을 가지고 있다.

Keywords

References

  1. Haynes, W. M., 2014 : Abundance of Elements in the Earth's Crust and in the Sea, CRC Handbook of Chemistry and Physics, 97th edition (2014-2015), pp.14-19.
  2. Sohn, Ho-Sang and Jung, Jae-Young, 2016 : Current Status of Titanium Smelting Technology, J. of Korean Inst. of Resources Recycling, 25(4), pp.68-79. https://doi.org/10.7844/kirr.2016.25.4.68
  3. Housley, K. L., 2007 : Ch. 1 A New Element, Black Sand The History of Titanium, 1st Ed., p. 1, Metal Management Aerospace, Inc., Hartford, USA.
  4. Ono, Katsutoshi, 2004: Extractive Metallurgy IV-Copper, Titanium, Zinc and Aluminum, Materia Japan, 43(9), pp. 744-751. https://doi.org/10.2320/materia.43.744
  5. Hunter, M. A., 1910 : Metallic titanium, J. Am. Chem. Soc., 32(3), pp.330-336. https://doi.org/10.1021/ja01921a006
  6. Kroll, W., 1940 : Method for manufacturing titanium and alloys thereof, US Patent No. 2,205,854.
  7. Kroll, W., 1940 : The production of ductile titanium, Trans. Electrochem. Soc., 78, pp.35-47. https://doi.org/10.1149/1.3071290
  8. Kroll, W., 1955 : How Commercial Titanium and Zirconium were Born, J. of The Franklin Institue, 260(3), pp.169-192. https://doi.org/10.1016/0016-0032(55)90727-4
  9. Burlington, S. E., 2004 : Summary of Emerging Titanium Cost Reduction Technologies, a study performed for US Department of Energy and Oak Ridge National Laboratory (Subcontract 4000023694).
  10. Joseph Gambogi, 2020 : Titanium mineral concentrates, U.S. Geological Survey, Mineral Commodity Summaries 2020, pp.176-177.
  11. Sohn, Ho-Sang and Jung, Jae-Young, 2016 : Current Status of Ilmenite Beneficiation Technology for Production of $TiO_2$, J. of Korean Inst. of Resources Recycling, 25(5), pp.64-74. https://doi.org/10.7844/kirr.2016.25.5.64
  12. Lee, So-Yeong, Park, Sung-Hun, and Sohn, Ho-Sang, 2019 : Removal of Iron from Ilmenite Through Selective Chlorination Using Coke and $Cl_2$ Gas, Korean J. Met. Mater., 57(39), pp.146-153. https://doi.org/10.3365/KJMM.2019.57.3.146
  13. Liu, Qiongsha, Baker, Phil, and Zhao, Hanyue, 2016 : Titanium sponge production technology in China, Proceedings of the 13th World Conference on Titanium, pp.177-182, Ed. by V. Venkatesh, A. L. Pilchak, J. E. Allison, S. Ankem, R. Boyer, J. Christodoulou, H. L. Fraser, M. A. Imam, Y. Kosaka, H. J. Rack, A. Chatterjee, and A. Woodfield, TMS (The Minerals, Metals & Materials Society).
  14. Moriya, Atsuro and Kanai, Akira, 1993 : Titanium Sponge Production at Sumitomo Sitix Corporation, Shigen-to-Sozai, 109(12), pp.1164-1169. https://doi.org/10.2473/shigentosozai.109.1164
  15. Sohn, Ho-Sang, 2019 : Engineering of Resources Recycling, p.118, KNU Press, Daegu, Korea.
  16. Nakamura, Kotaro, Iida, Takahiro, Nakamura, Nobuo, et al., 2017 : Titanium Sponge Production Method by Kroll Process at OTC, Materials Transactions, 58(3), pp.319-321 https://doi.org/10.2320/matertrans.MK201634
  17. Li, Liang, Li, Kaihua, Liu, Dachun, et al., 2018 : Carbochlorination of Low-Grade Titanium Slag to Titanium Tetrachloride in Molten Salt, Ed. by B. Davis et al. Proceedings of Extraction 2018, The Minerals, Metals & Materials Series, pp.753-762.
  18. George M. Bedinger, 2016 : Titanium, USGS 2016 Minerals Yearbook, p.79.2, USGS.
  19. Nanjo, M. and Mimura, K., 1985 : Super Refining of Rare Metals(I)- Titanium, from Ore to Sponge Ti, Bulletin of the Research Institute of Mineral Dressing and Metallurgy 41(2), pp.193-219.
  20. Crowley, Grant, 2003 : How to Extract Titanium Low-Cost, Advanced Materials & Processes, Nov., pp.25-27.
  21. Nagesh, Ch. R.V.S., Rao, Ch. Sridhar, Ballal, N.B., et al., 2004 : Mechanism of Titanium Sponge Formation in the Kroll Reduction Reactor, Metall. Mater. Trans. B, 35B, pp.65-74.
  22. Lee, Jae-Chan, Sohn, Ho-Sang, and Jung, Jae-Young, 2012 : Effect of TiCl4 Feeding Rate on the Formation of Titanium Sponge in the Kroll Process, Korean J. Met. Mater., 50(10), pp.745-751. https://doi.org/10.3365/kjmm.2012.50.10.745
  23. Hyodo, Tsuyoji and Mochzukim Norinao, 2007 : Titanium Sponge Production at OSAKA Titanium technologies Co., Ltd., J. MMIJ, 123(12), pp.698-703. https://doi.org/10.2473/journalofmmij.123.698
  24. Takeda, O., Uda, T., and Okabe, T. H., 2014 : Ch. 2.9 Rare Earth, Titanium Group Metals, and Reactive Metals Production, pp.995-1069, Treatise on Process Metallurgy 3: Industrial Processes, Elsevier Ltd.
  25. Park, Hyung-kyu, Kim, Chul-Joo, Yoon, Ho-Sung, et al., 2009 : Preparation of Magnesium by Fused Salt Electrolysis Using Mono-Polar Cell, J. of Korean Inst. of Resources Recycling, 18(3), pp.62-68.
  26. Kusamichi, Tatsuhiko and Mitsui, Noriyuki, 1999 : Progress in Titanium Melting Technology, Kobe Steel Engineering Reports, 49(3), pp.13-14.
  27. Nanjo, M., Mimura, K., and Sata, N. 1986 : Intelligent Metallurgy of Rare Metals (I), Titanium Production (II), Bulletin of the Research Institute of Mineral Dressing and Metallurgy, 42(1), pp.183-203.

Cited by

  1. 타이타늄의 리사이클링 기술 현황 vol.30, pp.1, 2020, https://doi.org/10.7844/kirr.2021.30.1.26
  2. YCl3-MgCl2 혼합 용융염 중 용융 Mg에 의한 Off-grade Ti 스크랩의 탈산 vol.30, pp.2, 2020, https://doi.org/10.7844/kirr.2021.30.2.46
  3. 타이타늄 밀링/터닝 스크랩의 절삭공구 소재화 vol.30, pp.2, 2020, https://doi.org/10.7844/kirr.2021.30.2.61