DOI QR코드

DOI QR Code

A study on the electrodeposition of uranium using a liquid cadmium cathode at 440℃ and 500℃

440℃와 500℃에서 액체카드뮴음극을 이용한 우라늄 전착에 관한 연구

  • Received : 2013.06.20
  • Accepted : 2013.07.11
  • Published : 2013.09.30

Abstract

Electrowinning process in pyroprocessing recovers U (uranium) and TRU (Trans Uranium) elements simultaneously from spent fuels using a liquid cadmium cathode (LCC). When the solubility limit of U deposits over 2.35wt% in Cd, U dendrites were formed on the LCC surface during the electrodeposition at $500^{\circ}C$. Due to the high surface area of dendritic U, the deposits were not submerged into the liquid cadmium pool but grow out of the LCC crucible. Since the U dendrites act as a solid cathode, it prevents the co-deposition of U and TRUs. In this study, the electrodeposition of U onto a LCC was carried out at 440 and $500^{\circ}C$ to compare the morphology and component of U deposits. The U deposits at $440^{\circ}C$ have a specific shape and were stacked regularly at the center of the LCC pool, while the U dendrites (i.e., ${\alpha}$-phase) at $500^{\circ}C$ were grow out of the LCC crucible. Through the microscopic observation and XRD analysis, the electrodeposits at $440^{\circ}C$, which have a round shape, were identified as an intermetallic compound such as $UCd_{11}$. It can be concluded that the LCC electrowinning operation at $440^{\circ}C$ achieves the co-recovery of U and TRU without the formation of U dendrites.

파이로프로세싱에서 전해제련은 액체카드뮴음극(liquid cadmium cathode, LCC)을 이용하여 우라늄과 초우라늄원소(TRU)를 동시에 회수하는 공정이다. 액체카드뮴음극의 표면에 전착된 우라늄이 카드뮴 중의 우라늄 용해도(2.35wt%)를 초과하여 전착되면, 표면적이 큰 수지상 우라늄을 형성하여 액체카드뮴 내부로 가라앉지 않고 이 수지상 우라늄 자체가 고체전극으로 작용한다. 따라서 본 연구에서는 Cd-U 상태도를 바탕으로 ${\alpha}$상 우라늄(수지상 우라늄)이 안정하게 존재하는 $500^{\circ}C$와 카드뮴과 우라늄간 금속간 화합물(intermetallic compound)이 형성되는 $440^{\circ}C$의 두 가지의 온도 조건에서 전착실험을 하였다. $440^{\circ}C$에서 정전류법으로 전착한 경우, 우라늄은 수지상이 아닌 알갱이 형태로 전착되었고 액체카드뮴음극의 도가니 밖으로 자라나지 않은 채 카드뮴 풀 중앙을 중심으로 일정하게 적층되었다. XRD 분석을 통해 이러한 전착물이 $UCd_{11}$이라는 금속간 화합물이라는 것을 알 수 있었다. $UCd_{11}$은 카드뮴보다 비중이 커서 전착 중에 액체카드뮴 내부로 침전되므로 교반기를 사용하지 않고도 우라늄과 초우라늄원소를 동시에 회수할 수 있을 것으로 판단된다.

Keywords

References

  1. Y.I. Chang, "The Integral Fast Reactor", Nuclear Technology, 88, pp. 129-138 (1988).
  2. J.L. Willit, W.E. Miller and J.E. Battles, "Electrorefining of uranium and plutonium - A literature review", Journal of Nuclear Materials, 195, pp. 229-249 (1992). https://doi.org/10.1016/0022-3115(92)90515-M
  3. J.H. Yoo, B.J. Lee, H.S. Lee and E.H. Kim, "Investigation of Pyroprocessing Concept and Its Applicability as an Alternative Technology for Conventional Fuel Cycle", J. Korean Radioact. Waste Soc., 5(4), pp. 283-295 (2007).
  4. S.B. Park, C.S. Seo, D.S. Kang, S.G. Kwon and S.W. Park, "Study of the Electrolytic Reduction of Uranium Oxide in LiCl-$Li_2O$ Molten Salts with an Integrated Cathode Assembly", J. Korean Radioact. Waste Soc., 3(2), pp. 105-112 (2005).
  5. S. Paek, S.H. Kim, D.S. Yoon, H. Lee and D.H. Ahn, "Performance of the mesh-type liquid cadmium cathode structure for the electrodeposition of uranium from the molten salt", Radiochimica Acta, 98, 779-783 (2010).
  6. S.H. Kim, D.S. Yoon, Y.J. You, S. Paek, J.B. Shim and D.H. Ahn, "Performance Evaluation of stirrers for Preventing Dendrite Growth on Liquid Cathode", J. Korean Radioact. Waste Soc., 7(2), pp. 127-133, (2009).
  7. S. Paek, D.S. Yoon, S. H. Kim, J.B. Shim and D. H. Ahn, "Development of liquid Cadmium Cathode Structure for the Inhibition of Uranium Dendrite Growth", J. Korean Radioact. Waste Soc., 8(1), pp. 9-17 (2010).
  8. T. Koyama, M. Iijuka, Y. Shoji, R. Fujita, H. Tanaka, T. Kobayashi and M. Tokiwai, "An Experiment Study of Molten Salt Electrorefining of Uranium Using Solid Iron Cathode and Liquid Cadmium Cathode for Development of Pyrometallurgical Reprocessing", J. Nucl. Sci. Tech., 34, pp. 384-393 (1997). https://doi.org/10.1080/18811248.1997.9733678
  9. J.E. Battles, K.M. Myles, J.J Laidler and D.W. Green, "Integral Fast Reactor Pyrochemical Process", Argonne National Laboratory Technical Report 1993, ANL-94/15 (1994).
  10. T. B. Massalski ed., "Binary Phase Diagram", American Society for Metals Metals Parks, Ohio 44073, (1986).
  11. A. J. Bard and L.R. Faulkner, Electrochemical Methods, Fundamentals and Application, Wiley, New York, Chapter 9-11 (1980).
  12. D.S. Poa, Z. Tomczuk and R.K. Steunenberg, "Voltammetry of uranium and plutonium in molten $LiCl-NaCl-CaCl_2$-$BaCl_2$", Journal of Electrochemistry, Soc. 135, pp.1161-1166 (1988). https://doi.org/10.1149/1.2095904
  13. G.Y. Kim, D.S. Yoon, S.W. Paek, S.H. Kim, T.J. Kim and D.H. Ahn, "A study on the electrochemical deposition behavior of uranium ion in a LiCl-KCl molten salt on solid and liquid electrode", Journal of Electroanalytical Chemistry, 682, pp.128-135 (2012). https://doi.org/10.1016/j.jelechem.2012.07.025
  14. B. Prabhakara Reddy, S. Vandarkuzhali, T. Subramanian and P. Venkatesh. "Electrochemical studies on the redox mechanism of uranium chloride in molten LiCl-KCl eutectic", Electrochimica Acta, 49, pp. 2471-2478 (2004). https://doi.org/10.1016/j.electacta.2004.02.002
  15. O. Shirai, T. Iwai, Y. Suzuki, Y. Sakamura and H. Tanaka. "Electrochemical behavior of actinide ions in LiCl-KCl eutectic melts", Journal of Alloys and Compounds, 271, pp. 685-688 (1998).
  16. S. Peak, S.H. Kim, D.S. Yoon, H. Lee and D.H. Ahn, "Performance of the mesh-type liquid cadmium cathode structure for the electrodeposition of uranium from the molten salt", Radiochimica Acta, 98, pp. 779-783 (2010).
  17. T. Kato, T. inoue, T. Iwai and Y. Arai, "Separation behaviors of actinides from rare-earths in molten salt electrorefining using saturated liquid cadmium cathode", Journal of Nuclear materials, 357, pp. 105-114 (2006). https://doi.org/10.1016/j.jnucmat.2006.06.003

Cited by

  1. Liquid cadmium cathode performance model based on the equilibrium behaviors of U and Pu in molten LiCl–KCl/Cd system at 500°C vol.528, pp.None, 2013, https://doi.org/10.1016/j.jnucmat.2019.151883