DOI QR코드

DOI QR Code

Use of Li-K-Cd Alloy to Remove MCl3 in LiCl-KCl Eutectic Salt

Li-K-Cd 합금을 이용한 LiCl-KCl 용융염에서 금속염화물의 제거

  • Received : 2018.04.20
  • Accepted : 2018.06.11
  • Published : 2018.09.30

Abstract

In this study, we prepared Li-K-Cd alloy, which meets the requirement of eutectic ratio of Li:K, to maintain the operating temperature of the drawdown process at $500^{\circ}C$ and to achieve the reuse of LiCl-KCl molten salt. The prepared Li-K-Cd alloys were added to LiCl-KCl salt bearing U and Nd at $500^{\circ}C$ to investigate the removal of $UCl_3$ in the salt. The reduction of $UCl_3$ in the salt was examined by measuring the OCP value of salt and analyzing the salt composition by ICP-OES. Reduction was also visually confirmed by change of salt color from dark purple to white. The experimental results reveal that the prepared Li-K-Cd alloy has reductive extractability for $UCl_3$ in salt. By improving the preparation method, the Li-K-Cd alloy can be applied to the drawdown process.

Li-Cd 합금을 이용한 환원추출방식을 LiCl-KCl 기반의 drawdown 공정에 적용하게 되면, LiCl-KCl 공융염의 조성이 파괴되므로 공정온도를 높여야 하며, 전해정련 및 전해제련과 같은 공정에 LiCl-KCl 용융염을 재사용할 수 없게 된다. 따라서, 본 연구에서는 공융염 조성에 적합한 Li-K-Cd 합금을 제조하였으며, 이를 이용하여 U와 Nd가 포함된 LiCl-KCl 염에 투입하여 용융염 내 $UCl_3$의 제거가 가능한지 평가하였다.

Keywords

References

  1. L.M. Ferris, J.C. Mailen, and F.J. Smith, "Equilibrium distribution of actinide and lanthanide elements between molten fluoride salts and liquid bismuth solutions", J. Inorg. Nucl. Chem., 32(6), 2019-2035 (1970). https://doi.org/10.1016/0022-1902(70)80611-X
  2. L.M. Ferris, J.C. Mailen, and F.J. Smith, "Chemistry and thermodynamics of the distribution of lanthanide and actinide elements between molten LiF-BeF2 and liquid bismuth solutions", J. Inorg. Nucl. Chem., 33(5), 1325-1335 (1971). https://doi.org/10.1016/0022-1902(71)80428-1
  3. L.S. Chow, J.K. Basco, E.L. Carls, and T.R. Johnson, Testing of pyrochemical centrifugal contactors, CONF- 9606116-64, ANL/CMP/CP-88009 (1996).
  4. H. Moriyama, H. Yamana, S. Nishikawa, S. Shibata, N. Wakayama, Y. Miyashita, K. Miritani, and T. Mitsugashira, "Thermodynamics of reductive extraction of actinides and lanthanides from molten chloride salt in liquid metal", J. Alloys and Compd., 271-273, 587-591 (1998). https://doi.org/10.1016/S0925-8388(98)00165-0
  5. K. Kinoshita, T. Tsukada, and T. Ogata, "Single-stage extraction test with continuous flow of molten LiCl-KCl and liquid Cd for pyro-reprocessing of metal FBR fuel", J. Nucl. Sci. Tech., 44(12), 1557-1564 (2007). https://doi.org/10.1080/18811248.2007.9711406
  6. K. Kinoshita and T. Tsukada, "Countercurrent extraction test with continuous flow of molten LiCl-KCl salt with liquid Cd for pyro-reprocessing of metal FBR fuel", J. Nucl. Sci. Tech., 47(2), 211- 218 (2010). https://doi.org/10.1080/18811248.2010.9711947
  7. S. Delpech, E. Merle-Lucotte, D. Heuer, M. Allibert, V. Ghetta, C. Le-Brun, X. Doligez, and G. Picard, "Reactor physic and reprocessing scheme for innovative molten salt reactor system", J. Fluor. Chem., 130(1), 11-17 (2009). https://doi.org/10.1016/j.jfluchem.2008.07.009
  8. W. Cohen, Q. Zhou, E. Wu, and J. Zhang, "Molten fluoride salt and liquid metal multistage extraction model", Prog. Nucl. Energy, 97, 214-219 (2017). https://doi.org/10.1016/j.pnucene.2017.01.014
  9. J. Finne, G. Picard, S. Sanchez, E. Walle, O. Conocar, J. Lacquement, J.-M. Boursier, and D. Noel, "Molten salt/ liquid metal extraction: Electrochemical determination of activity coefficients in liquid metals", J. Nuc. Mats., 344(1-3), 165-168 (2005). https://doi.org/10.1016/j.jnucmat.2005.04.036
  10. A.S. Basin, A.B. Kaplun, A.B. Meshalkin, and N.F. Uvaro, "The LiCl-KCl binary system", Russ. J. Inorg. Chem., 53(9), 1509-1511 (2008). https://doi.org/10.1134/S003602360809026X
  11. J.P. Ackerman and J. L. Settle, "Distribution of plutonium, americium, and several rare earth fission product elements between liquid cadmium and LiCl-KCl eutectic", J. Alloys and Compd., 199(1-2), 77-84 (1993). https://doi.org/10.1016/0925-8388(93)90430-U