• Title/Summary/Keyword: 액체금속추출

Search Result 25, Processing Time 0.024 seconds

서프레셔를 적용한 액체금속이온원의 에너지 퍼짐 연구

  • Min, Bu-Gi;O, Hyeon-Ju;Jo, Byeong-Seong;Gang, Seung-Eon;Choe, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.463-463
    • /
    • 2011
  • 집속이온빔장치(Foucused Ion Beam)에서 사용하는 액체금속이온원(Liquid Metal Ion Source)은 고 전류밀도, 고 휘도, 낮은 에너지퍼짐 등 많은 장점이 있다. 대부분의 집속이온빔 장치에서 플라즈마 이온소스에 비해 빔의 직경이 작고 GFIS 보다 다루기 쉬워 액체금속이온원을 많이 사용하고 있다. 기존에 사용하던 액체금속이온원에 서프레셔라는 새로운 전극을 추가시켜 팁과 갈륨저장소, 서프레셔, 추출극 구조로 만들었다. 이 연구를 위해 RPA(Retarding Potential Analyser)를 제작 하였다. RPA는 두 개의 메쉬와 하나의 컬렉터로 이루어져 있으며, 액체금속이온과 플로팅 되어있는 RPA에 전압의 차이를 주기위해 베터리로 제작한 파워로 액체금속이온에 인가되는 전압에 + 90V, -90V까지 제어가 가능하게 만들었다. 본 연구에서는 서프레셔의 유무에 따른 액체금속이온원의 에너지 퍼짐에 대해 연구하였다. 추출극에 전압 변화를 주어 방출되는 전류를 5uA, 10uA, 15uA, 20uA로 변화시켜가며 RPA에서 측정되는 전류를 가지고 전류-전압의 관계를 보았고, 에너지 퍼짐정도를 알았다. 마찬가지로 서프레셔에 전압 변화를 주어 전류-전압 관계, 에너지 퍼짐정도를 알았다.

  • PDF

서프레서를 적용한 집속이온빔 장치 액체금속이온원의 각분포 특성연구

  • Min, Bu-Gi;O, Hyeon-Ju;Gang, Seung-Eon;Choe, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.545-545
    • /
    • 2012
  • 집속이온빔장치(FIB: Focused Ion Beam System)에 사용하는 액체금속이온원(LMIS: Liquid Metal Ion Source)은 고 전류밀도, 고 휘도, 낮은 에너지퍼짐 등 많은 장점이 있다. 집속이온빔장치는 주로 표면 분석, 집적 회로의 수정, 마스크 교정(Repair) 및 잘못된 부분의 분석(Failure Analysis) 등에 사용되고 있는데 최근에는 고 분해능의 이온빔 리소그래피와 이온 주입의 기술 및 미세가공 기술 등의 분야에 집중되고 있으며 이를 위해서는 집속이온빔장치의 수렴성(Convergence)을 개선해 나가는 것이 중요하다. 집속이온빔장치의 수렴성은 이온빔의 에너지 퍼짐(Energy Spread)과 각 분포(Angular Distribution)에 많은 영향을 받으며 에너지퍼짐 특성은 색수차에 직접적인 영향을 준다. 수렴성을 개선하기 위해 기존의 에미터(Emitter), 저장소(Reservoir), 추출극(Extractor)으로 제작된 액체금속이온원에 서프레서(Suppressor)라는 새로운 전극을 사용하여 이 전극의 유 무에 따른 각 분포의 변화에 대해 연구하였다.

  • PDF

Selective Recovery of Platinum Group Metals by Solvent Extraction and Electrolysis in Non-aqueous Solution Based on Ionic Liquids (이온성액체 기반 비수계 용액에서 용매추출과 전해에 의한 백금족 금속의 분리회수)

  • Park, Gwang-won;Park, Jesik;Lee, Churl Kyoung
    • Resources Recycling
    • /
    • v.28 no.2
    • /
    • pp.46-53
    • /
    • 2019
  • In this study, the extraction and reduction behavior of platinum group metals in a non-aqueous solvent based on ionic liquids was investigated in order to confirm a new extraction technology of platinum group metals. Platinum was selectively extracted using an ionic liquid $[C_4mim]PF_6$ from a mixed solution of $PdCl_2$, $PtCl_4$ and $RhCl_3$ dissolved with concentration ratio of 10:1:0.5 M. After stripping of the metals by 1 M $HNO_3$ solution, the platinum was preferentially reduced by aqueous electrolysis on gold electrode at -0.8 V (vs. Pt-QRE). The residual palladium and rhodium were transferred to ionic liquid of $[C_4mim]Cl$. The metallic palladium and rhodium could be sequentially reduced on gold and STS304 as working electrodes by non-aqueous electrolysis, respectively.

Solvent Extraction Separation of Co(II) and Ni(II) from Weak Hydrochloric Acid Solution with Ionic Liquids Synthesized from Organophosphorus Acids (유기인산계 추출제로 합성한 이온성액체에 의한 묽은 염산용액에서 코발트(II)와 니켈(II)의 추출분리)

  • Moon, Hyun Seung;Song, Si Jeong;Tran, Thanh Tuan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.55-63
    • /
    • 2020
  • In order to investigate the separation of Co(II) and Ni(II) by ionic liquids from weak hydrochloric acid solutions, extraction experiments were performed by changing the type and concentration of ionic liquids and the initial pH of the aqueous phase. Two kinds of ionic liquids based on Aliquat 336 were employed in this work; one was synthesized by reacting organophosphorus acids(D2EHPA, PC88A, Cyanex 272, Cyanex 301) with Aliquat 336 and the other was prepared by exchanging the chloride ion of Aliquat 336 with SCN-. The three types of ionic liquids (ALi-D2, ALi-PC, and ALi-CY272) showed better extraction of Co(II) than Ni(II), and the equilibrium pH was higher than the initial pH. In the case of ALi-CY301, the selectivity of Co(II) and Ni(II) depended on the extraction conditions. In addition, the effect of the addition of TBP to the ionic liquid on the extraction of two metals was also investigated. Employment of ALi-SCN as an extractant resulted in selective extraction of Co(II) and complete separation of the two metal ions was possible.

Thermal-Hydraulic Performance Analysis of KALIMER Conceptual Design Cores and Subassemblies (액체금속로 KALIMER 개념설계 노심 및 집합체 열유체 특성 분석)

  • 임현진;김영균;김영일;오세기
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.101-111
    • /
    • 2004
  • The main purpose of a liquid metal reactor core thermal-hydraulic design is to efficiently extract the core thermal power by distributing the appropriate sodium coolant flow according to the power distribution in the core. The thermal-hydraulic design procedure consists of the coolant flow distribution to the sub-assemblies, the coolant/fuel temperature calculations and detailed subchannel analysis. This paper describes the LMR core thermal-hydraulic design methodology and summarizes the major design and analysis results of KALIMER breeder and breakeven cores and subassemblies. KALIMER is a 150 MWe rated (392 MWth) heterogeneous core with U-TRU-Zr ternary alloy fuel and sodium coolant.

A Review on the Application of Ionic Liquids for the Radioactive Waste Processing (방사성 폐기물 처리를 위한 이온성 액체 활용)

  • Park, Byung Heung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.45-57
    • /
    • 2014
  • Academic interests in ionic liquid (IL) technologies have been extended to the nuclear industry and the applicability of ionic liquids for processing radioactive materials have been investigated by many researchers. A number of studies have reported interesting results with respect to the spectroscopic and electrochemical behaviors of metal elements included in spent nuclear fuels. The measured and observed properties of metal ions in TBP(tri-butyl phosphate) dissolved ILs have led the development of alternative technologies to traditional aqueous processes. On the other hand, the electrochemical deposition of metal ions in ILs have been investigated for the application of the solvents to aqueous as well as to non-aqueous processes. In this work, a review on the application of ILs in nuclear fuel cycle is presented for the purpose of categorizing and summarizing the notable researches on ILs.

A Modified Process for the Separation of Fe(III) and Cu(II) from the Sulfuric Acid Leaching Solution of Metallic Alloys of Reduction Smelted Spent Lithium-ion Batteries (폐리튬이온전지의 용융환원된 금속합금상의 황산침출액에서 철(III)과 구리(II)의 분리를 위한 공정 개선)

  • Nguyen, Thi Thu Huong;Tran, Thanh Tuan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.12-20
    • /
    • 2022
  • The smelting reduction of spent lithium-ion batteries results in metallic alloys containing Co, Cu, Fe, Mn, Ni, and Si. A process to separate metal ions from the sulfuric acid leaching solution of these metallic alloys has been reported. In this process, ionic liquids are employed to separate Fe(III) and Cu(II). In this study, D2EHPA and Cyanex 301 were employed to replace these ionic liquids. Fe(III) and Cu(II) from the sulfate solution were sequentially extracted using 0.5 M D2EHPA with three stages of cross-current and 0.3 M Cyanex 301. The stripping of Fe(III) and Cu(II) from the loaded phases was performed using 50% (v/v) and 60% (v/v) aqua regia solutions, respectively. The mass balance results from this process indicated that the recovery and purity percentages of the metals were greater than 99%.

A Study on the Droplet Formation of Liquid Metal in Water-Mercury System as a Surrogate of Molten Salt-Liquid Metal System at Room Temperature (용융염-액체금속 계의 대용물인 물-수은 계에서 액체금속 액적의 생성에 대한 연구)

  • Kim, Yong-il;Park, Byung Gi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.165-172
    • /
    • 2018
  • As an approach for estimation of the droplet size in the molten salt-liquid metal extraction process, a droplet formation experiment at room temperature was conducted to evaluate the applicability of the Scheele-Meister model with water-mercury system as a surrogate that is similar to the molten salt-liquid metal system. In the experiment, droplets were formed through the nozzle and the droplet size was measured using a digital camera and image analysis software. As nozzles, commercially available needles with inner diameters (ID) of 0.018 cm and 0.025 cm and self-fabricated nozzles with 3-holes (ID: 0.0135 cm), 4-holes (ID: 0.0135 cm), and 2-holes (ID: 0.0148 cm) were used. The mercury penetration lengths in the nozzles were 1.3 cm for the needles and 0.5 cm for the self-fabricated nozzles. The droplets formed from each nozzle maintained stable spherical shape up to 20 cm below the nozzle. The droplet size measurements were within a 10% error range when compared to the Scheele-Meister model estimates. The experimental results show that the Scheele-Meister model for droplet size estimation can be applied to nozzles that stably form droplets in a water-mercury system.