DOI QR코드

DOI QR Code

A Review on the Application of Ionic Liquids for the Radioactive Waste Processing

방사성 폐기물 처리를 위한 이온성 액체 활용

  • Received : 2013.09.17
  • Accepted : 2013.12.03
  • Published : 2014.03.30

Abstract

Academic interests in ionic liquid (IL) technologies have been extended to the nuclear industry and the applicability of ionic liquids for processing radioactive materials have been investigated by many researchers. A number of studies have reported interesting results with respect to the spectroscopic and electrochemical behaviors of metal elements included in spent nuclear fuels. The measured and observed properties of metal ions in TBP(tri-butyl phosphate) dissolved ILs have led the development of alternative technologies to traditional aqueous processes. On the other hand, the electrochemical deposition of metal ions in ILs have been investigated for the application of the solvents to aqueous as well as to non-aqueous processes. In this work, a review on the application of ILs in nuclear fuel cycle is presented for the purpose of categorizing and summarizing the notable researches on ILs.

이온성 액체 기술에서의 학문적 연구들은 원자력 산업으로 확대되어 왔으며 많은 연구자들에 의해 방사성 물질의 처리에 이온성 액체의 활용이 연구되어 왔다. 다수의 연구들에 의해 사용 후 핵연료에 포함되어 있는 금속 원소들의 분광학적, 전기화학적 거동에 대한 흥미로운 결과들이 보고되었다. TBP(tri-butyl phosphate)를 용해시킨 이온성 액체에서 측정되고 관찰된 금속 이온들의 물성들은 전통적인 수용성 공정에 대한 대안 기술 개발을 유발시켰다. 한편, 수용성 및 비수용성 공정에서의 활용을 위해 이온성 액체에서 금속 이온의 전기화학적 전착이 연구되었다. 본 연구에서는 이온성 액체 연구에서 주목할 만한 내용들을 분류하고 정리하여 핵연료주기에서 이온성 액체의 활용에 대해 고찰하였다.

Keywords

References

  1. DOE/EIA Report, "Annual Energy Review 2011", DOE/EIA-0384 (2012).
  2. IAEA Report, "Status and Trends in Spent Fuel Reprocessing", IAEA-TECDOC-1497 (2005).
  3. IAEA Report, "Spent Fuel Reprocessing Options", IAEA-TECDOC-1587 (2008).
  4. G.R. Choppin, M.K. Khankhasayev, and H.S. Plendl, Eds., Chemical Separations in Nuclear Waste Management: The State of the Art and a Look to the Future, Battelle Press (2002).
  5. J.J. Laidler, J.E. Battles, W.E. Miller, J.P. Ackerman, and E.L. Carls, "Development of Pyroprocessing Technology", Prog. Nucl. Energ., 31, pp. 131-140 (1997). https://doi.org/10.1016/0149-1970(96)00007-8
  6. C.C. McPheeters, R.D. Pierce, and T.P. Mulcahey, "Application of the Pyrochemical Process to Recycle of Actinides from LWR Spent Fuel", Prog. Nucl. Energ., 31, pp. 175-186 (1997). https://doi.org/10.1016/0149-1970(96)00010-8
  7. T. Usami, M. Kurata, T. Inoue, H. E. Sims, S. A. Beetham, and J. A. Jenkins, "Pyrochemical Reduction of Uranium Dioxide and Plutonium Dioxide by Lithium Metal", J. Nucl. Mater., 300, pp. 15-26 (2002). https://doi.org/10.1016/S0022-3115(01)00703-6
  8. K.C. Song, H. Lee, J.M. Hur, J.G. Kim, D.H. Ahn, and Y.Z. Cho, "Status of Pyroprocessing Technology Development in Korea", Nucl. Eng. Technol., 42, pp. 131-144 (2010). https://doi.org/10.5516/NET.2010.42.2.131
  9. H. Lee, G.I. Park, K.H. Kang, J.M. Hur, J.G. Kim, D.H. Ahn, Y.Z. Cho, and E. H. Kim, "Pyroprocessing Technology Developement at KAERI", Nucl. Eng. Technol., 43, pp. 317-328 (2011). https://doi.org/10.5516/NET.2011.43.4.317
  10. K.A. Venkatesan, T.G. Srinivasan, and P.R. Vasudeva Rao, "A Review on the Electrochemical Applications of Room Temperature Ionic Liquids in Nuclear Fuel Cycle", J. Nucl. Radiochem. Sci., 10, R1-R6 (2009).
  11. S.H. Ha, R.N. Menchavez, and Y.M. Koo, "Reprocessing of Spent Nuclear Waste Using Ionic Liquids", Korean J. Chem. Eng., 27, pp. 1360-1365 (2010). https://doi.org/10.1007/s11814-010-0386-1
  12. P.R. Vasudeva Rao, K.A. Venkatesan, A. Rout, T.G. Srinivasan, and K. Nagarajan, "Potential Applications of Room Temperature Ionic Liquids for Fission Products and Actinide Separation". Sep. Sci. Technol., 47, pp. 204-222 (2012). https://doi.org/10.1080/01496395.2011.628733
  13. B. Kirchner, Eds., Ionid Liquids, Springer (2010).
  14. M. Gaune-Escard and K.R. Seddon, Eds, Molten Salts and Ionic Liquids: Never the Twain?, Wiley (2010).
  15. R.D. Rogers and K.R. Seddon, "Ionic Liquids - Solvents of the Future?", Science, 302, pp. 792-793 (2003). https://doi.org/10.1126/science.1090313
  16. J.G. Huddleston and R.D. Rogers, "Room Temperature Ionic Liquids as Novel Media for 'Clean' Liquid-Liquid Extraction", Chem. Commun., Issue 16, pp. 1765-1766 (1998).
  17. A.E. Visser, R.P. Swatloski, S.T. Griffin, D.H. Hartman, and R.D. Rogers, "Lquid/liquid Extraction of Metal Ions in Room Temperature Ionic Liquids", Sep. Sci. Technol., 36, pp. 785-804 (2001). https://doi.org/10.1081/SS-100103620
  18. A.E. Visser, R.P. Swatloski, W.M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki, J.H. Davis Jr., and R.D. Rogers, "Task-specific Ionic Liquids for the Extraction of Metal Ions from Aqueous Solutions", Chem. Commun., Issue 1, pp. 135-136 (2001).
  19. M.L. Dietz, "Ionic Liquids as Extraction Solvents: Where do We Stand?", Sep. Sci. Technol., 41, pp. 2047-2063 (2006). https://doi.org/10.1080/01496390600743144
  20. M. Galinski, A. Lewandowski, and I. Stepniak, "Ionic Liquids as Electrolytes", Electrochim. Acta, 51, pp. 5567-5580 (2006). https://doi.org/10.1016/j.electacta.2006.03.016
  21. M. Hayyan, F.S. Mjalli, M.A. Hashim, I.M. Al-Nashef, and T.X. Mei, "Investigation the Electrochemical Windows of Ionic Liquids", J. Ind. Eng. Chem., 19, pp. 106-112 (2013). https://doi.org/10.1016/j.jiec.2012.07.011
  22. S.S. Moganty, R.E. Baltus, and D. Roy, "Electrochemical Windows and Impedance Characteristics of [$Bmim^{+}$][$BF_{4}\;^{-}$] and [$Bdmim^{+}$][$BF_{4}\;^{-}$] Ionic Liquids at the Surfaces of Au, Pt, Ta and Glassy Carbon Electrodes", Chem. Phys. Lett., 483, pp. 90-94 (2009). https://doi.org/10.1016/j.cplett.2009.10.063
  23. F. Endres, "Ionic Liquids: Solvents for the Electrodeposition of Metals and Semiconductors", Chemphyschem, 3, pp. 144-154 (2002). https://doi.org/10.1002/1439-7641(20020215)3:2<144::AID-CPHC144>3.0.CO;2-#
  24. W. Simka, D. Puszczyk, and G. Nawrat, "Electrodeposition of Metals from Non-aqueous Solutions", Electrochim. Acta, 54, pp. 5307-5319 (2009). https://doi.org/10.1016/j.electacta.2009.04.028
  25. A.P. Abbott and K.J. McKenzie, "Application of Ionic Liquids to the Electrodeposition of Metals", Phys. Chem. Chem. Phys., 8, pp. 4265-4279 (2006). https://doi.org/10.1039/b607329h
  26. A.E. Visser and R.D. Rogers, "Room-temperature Ionic Liquids: New Solvents for F-element Separations and Associated Solution Chemistry", J. Solid State Chem, 171, pp. 109-113 (2003). https://doi.org/10.1016/S0022-4596(02)00193-7
  27. Z. Kolarik, "Ionic Liquids: How Far Do they Extend the Potential of Solvent Extraction of f-Elements?", Solvent Extr. Ion Exch., 31, pp. 24-60 (2013). https://doi.org/10.1080/07366299.2012.700589
  28. P. Giridhar, K.A. Venkatesan, T.G. Srinivasa, and P.R. Vasudeva Rao, "Extraction of Uranium(VI) from Nitric Acid Medium by 1.1 M Tri-n-butylphosphate in Ionic Liquid Diluent", J. Radioanal. Nucl. Chem., 265, pp. 31-38 (2005). https://doi.org/10.1007/s10967-005-0785-7
  29. P. Giridhar, K.A. Venkatesan, T.G. Srinivasan, and P.R. Vasudeva Rao, "Effect of Alkyl Group in 1-Alkyl-3-methylimidazolium Hexafluorophosphate Ionic Liquids on the Extraction of Uranium by Trin-butylphosphate Diluted with Ionic Liquids", J. Nucl. Radiochem. Sci, 5, pp. 21-26 (2004). https://doi.org/10.14494/jnrs2000.5.21
  30. P. Giridhar, K.A. Venkatesan, S. Subramaniam, T.G. Srinivasan, and P.R. Vasudeva Rao, "Extraction of Uranium(VI) by 1.1 M Tri-n-butylphosphate/ Ionic Liquid and the Feasibility of Recovery by Direct Electrodeposition from Organic Phase", J. Alloys Compd, 448, pp. 104-108 (2008). https://doi.org/10.1016/j.jallcom.2007.03.115
  31. P. Giridhar, K.A. Venkatesan, T.G. Srinivasan, and P.R. Vasudeva Rao, "Electrochemical Behavior of Uranium(VI) in 1-butyl-3-methylimidazolium Chloride and Thermal Characterization of Uranium Oxide Deposit", Electrochim. Acta, 52, pp. 3006-3012 (2007). https://doi.org/10.1016/j.electacta.2006.09.038
  32. P. Giridhar, K.A. Venkatesan, T.G. Srinivasan, and P.R. Vasudeva Rao, "Comparison of Diluent Characteristics of Imidazolium Hexafluophosphate Ionic Liquid with n-Dodecane", J. Nucl. Radiochem. Sci, 5, pp. 17-20 (2004). https://doi.org/10.14494/jnrs2000.5.17
  33. A.E. Visser, M.P. Jensen, I. Laszak, K.L. Nash, G.R. Choppin, and R.D. Rogers, "Uranyl Coordination Environment in Hydrophobic Ionic Liquids: An in Situ Investigation", Inorg. Chem., 42, pp. 2197-2199 (2003). https://doi.org/10.1021/ic026302e
  34. C. Gaillard, O. Klimchuk, A. Ouadi, I. Billard, and C. Hennig, "Evidence for the formation of $UO_2(NO_3)_4\;^{2-}$ in an ionic liquid by EXAFS", Dalton Trans., 41, pp. 5476-5479 (2012). https://doi.org/10.1039/c2dt30205e
  35. M.L. Dietz and D.C. Stepinski, "Anion Concentration-dependent Partitioning Mechanism in the Extraction of Uranium into Room-temperature Ionic Liquids", Talanta, 75, pp. 598-603 (2008). https://doi.org/10.1016/j.talanta.2007.11.051
  36. A. Ouadi, O. Klimchuk, C. Gaillard, and I. Billard, "Solvent Extraction of U(VI) by Task Specific Ionic Liquids Bearing Phosphoryl Groups", Green Chem., 9, pp. 1160-1162 (2007). https://doi.org/10.1039/b703642f
  37. T.J. Bell and Y. Ikeda, "The Application of Novel Hydrophobic Ionic Liquids to the Extraction of Uranium(VI) from Nitric Acid Medium and a Determination of the Uranyl Complexes Formed", Dalton Trans., 40, pp. 10125-10130 (2011). https://doi.org/10.1039/c1dt10755k
  38. M. Srncik, D. Kogelnig, A. Stojanovic, W. Korner, R. Krachler, and G. Wallner, "Uranium Extraction from Aqueous Solutions by Ionic Liquids", Appl. Radiat. Isot., 67, pp. 2146-2149 (2009). https://doi.org/10.1016/j.apradiso.2009.04.011
  39. Z. Kolarik, U. Mullich, and F. Gassner, "Selective Extraction of Am(III) over Eu(III) BY 2,6-ditriazolyl-and 2,6-ditriazinylpyridines", Solvent Extr. Ion Exch., 17, pp. 23-32 (1999). https://doi.org/10.1080/07360299908934598
  40. Y. Zuo, Y. Liu, J. Chen, and D.Q. Li, "The Separation of Cerium(IV) from Nitric Acid Solutions Containing Thorium(IV) and Lanthanides(III) Using Pure $[C_8mim]PF_6$ as Extracting Phase", Ind. Eng. Chem. Res., 47, pp. 2349-2355 (2008). https://doi.org/10.1021/ie071486w
  41. K. Shimojo, K. Kurahashi, and H. Naganawa, "Extraction Behavior of Lanthanides using a Diglycolamide Derivative TODGA in Ionic Liquids", Dalton Trans., 37, pp. 5083-5088 (2008).
  42. F. Kubota, Y. Koyanagi, K. Nakashima, K. Shimojo, N. Kamiya, and M. Goto, "Extraction of Lanthanide Ions an Organophosphorous Extractant into Ionic Liquids", Solvent Extr. Res. Dev. Jpn., 15, pp. 81-87 (2008).
  43. A. Sengupta, P.K. Mohapatra, M. Igbal, W. Verboom, J. Huskens, and S.V. Godbole, "Extraction of Am(III) Using Novel Solvent Systems Containing a Tripodal Diglycolamide Ligand in Room Temperature Ionic Liquids: a 'Green' Approach for Radioactive Waste Pprocessing", RSC Adv., 2, pp. 7492-7500 (2012). https://doi.org/10.1039/c2ra20577g
  44. S. Dai, Y.H. Ju, and C.E. Barnes, "Solvent Extraction of Strontium Nitrate by a Crown Ether using Room-temperature Ionic Liquids", J. Chem. Soc. Dalton Trans., Issue 8, pp. 1201-1202 (1999).
  45. A.E. Visser, R.P. Swatloski, W.M. Reichert, S.T. Griffin, and R.D. Rogers, "Traditional Extractants in Nontraditional Solvents: Groups 1 and 2 Extraction by Crown Ethers in Room-Temperature Ionic Liquids", Ind. Eng. Chem. Res., 39, pp. 3596-3604 (2000). https://doi.org/10.1021/ie000426m
  46. M.L. Dietz and J.A. Dzielawa, "Ion-exchange as a Mode of Cation Transfer into Room-temperature Ionic Liquids Containing Crown Ethers: Implications for the 'Greenness' of Ionic Liquids as Diluents in Liquid-Liquid Extraction", Chem. Commun. Issue 20, pp. 2124-2125 (2001).
  47. S. Chun, S.V. Dzyuba, and R.A. Bartsch, "Influence of Structural Variation in Room-temperature Ionic Liquids on the Selectivity and Efficiency of Competitive Alkali Metal Salt Extraction by a Crown Ether", Anal. Chem., 73, pp. 3737-3741 (2001). https://doi.org/10.1021/ac010061v
  48. H. Luo, J.F. Huang, and S. Dai, "Solvent Extraction of $Sr^{2+}$ and $Cs^+$ using Protic Amide-Based Ionic Liquids", Sep. Sci. Technol., 45, pp. 1679-1688 (2010). https://doi.org/10.1080/01496395.2010.493798
  49. P.Y. Chen and C.L. Hussey, "Electrochemistry of Ionophore-coordinated Cs and Sr Ions in the Tri-1-butylmethylammonium Bis((trifluoromethyl)sulfonyl) imide Ionic Liquid", Electrochim. Acta, 50, pp. 2533-2540 (2005). https://doi.org/10.1016/j.electacta.2004.10.082
  50. P.Y. Chen, "The Assessment of Removing Strontium and Cesium Cations from Aqueous Solutions Based on the Combined Methods of Ionic Liquid Extraction and Electrodeposition", Electrochim. Acta, 52, pp. 5484-5492 (2007). https://doi.org/10.1016/j.electacta.2007.03.010
  51. V.A. Cocaila, K.E. Gutowski, and R.D. Rogers, "The Coordination Chemistry of Actinides in Ionic Liquids: A Review of Experiment and Simulation", Coord. Chem., Rev., 250 pp. 755-764 (2006). https://doi.org/10.1016/j.ccr.2005.09.019
  52. K. Takao, T.J. Bell, and Y. Ikeda, "Actinide Chemistry in Ionic Liquids", Inorg. Chem., 52, pp. 3459-3472 (2013). https://doi.org/10.1021/ic300807v
  53. R. De Waele, L. Heerman, and W. D'Olieslager, "Electrochemistry of Uranium(IV) in Acidic $AlCl_3$+N-(n-butyl)pyridinium Chloride Room-temperature Molten Salts", J. Electroanal. Chem., 142, pp.137-146 (1982). https://doi.org/10.1016/S0022-0728(82)80011-9
  54. L. Heerman, R. De Waele, and W. D'Olieslager, "Electrochemistry and Spectroscopy of Uranium in Basic $AlCl_3$+N-(n-butyl)pyridinium Chloride Room Temperature Molten Salts", J. Electroanal. Chem., 193, pp.289-294 (1985). https://doi.org/10.1016/0022-0728(85)85071-3
  55. C.J. Anderson, M.R. Deakin, G.R. Choppin, W. D'Olieslager, L. Heerman, and D.J. Pruett, "Spectroscopy and Electrochemistry of Uranium(IV)/ uranium(III) in Basic Aluminum Chloride-1-ethyl-3-methylimidazolium Chloride", Inorg. Chem., 30, pp. 4013-4016 (1991). https://doi.org/10.1021/ic00021a009
  56. R. De Waele, L. Heerman, and W. D'Olieslager, "Potentiometric and Spectroscopic Study of Uranium(IV)-uranium(III) in Acidic $AlCl_3$-N-(n-butyl) pyridinium Chloride Melts", J. Less Common Metals, 122, pp. 319-327 (1986). https://doi.org/10.1016/0022-5088(86)90426-1
  57. P.B. Hitchcock, T.J. Mohammed, K.R. Seddon, J.A. Zora, C.L. Hussey, and E.H. Ward, "1-methyl-3-ethylimidazolium Hexachlorouranate(IV) and 1-methyl-3-ethylimidazolium Tetrachlorodioxouranate(VI): Synthesis, Structure, and Electrochemistry in a Room Temperature Ionic Liquid", Inorg. Chim. Acta, 113, L25-L26 (1986). https://doi.org/10.1016/S0020-1693(00)82244-6
  58. S.I. Nikitenko, C. Cannes, C. Le Naour, P. Moisy, and D. Trubert, "Spectroscopic and Electrochemical Studies of U(IV)-Hexachloro Complexes in Hydrophobic Room-temperature Ionic Liquids [Bu-MeIm][$Tf_2N$] and [$MeBu_3N$][$Tf_2N$]", Inorg. Chem., 44, pp. 9497-9505 (2005). https://doi.org/10.1021/ic051065b
  59. C.M. Wai, Y.J. Liao, W. Liao, G. Tian, R.S. Addleman, D. Quach, and S.P. Pasilis, "Uranium Dioxide in Ionic Liquid with a Tri-n-butylphosphate-$HNO_3$ Complex-Dissolution and Coordination Environment", Dalton Trans., 40, pp. 5039-5045 (2011). https://doi.org/10.1039/c0dt01518k
  60. D.L. Quach, C.M. Wai, and S.P. Pasilis, "Characterization of Uranyl(VI) Nitrate Complexes in a Room Temperature Ionic Liquid Using Attenuated Total Reflection-Fourier Transform Infrared Spectrometry", Inorg. Chem., 49, pp. 8568-8572 (2010). https://doi.org/10.1021/ic101197j
  61. S.P. Pasilis and A. Blumenfeld, "Effect of Nitrate, Perchlorate, and Water on Uranyl(VI) Speciation in a Room-Temperature Ionic Liquid: A Spectroscopic Investigation", Inorg. Chem., 50, pp. 8302-8307 (2011). https://doi.org/10.1021/ic2008232
  62. P. Giridhar, K.A. Venkatesan, S. Subramaniam, T.G. Srinivasan, and P.R. Vasudeva Rao, "Electrochemical Behavior of Uranium(VI) in 1-butyl-3-methylimidazolium Chloride and in 0.05 M Aliquat-336/chloroform", Radiochim. Acta, 94, pp. 415-420 (2006).
  63. P. Nockemann, R. Van Deun, B. Thijs, D. Huys, E. Vanecht, K. Van Hecke, L. Van Meervelt, and K. Binnemans, "Uranyl Complexes of Carboxyl-Functionalized Ionic Liquids", Inorg. Chem., 49, pp. 3351-3360 (2010). https://doi.org/10.1021/ic902406h
  64. J.P. Schoebrechts and B. Gilbert, "Electrochemical and Spectroscopic Studies of Neptunium in the Aluminum Chloride-1-n-butylpyridinium Chloride Melt at $40^{\circ}C$", Inorg. Chem., 24, pp. 2105-2110 (1985). https://doi.org/10.1021/ic00207a028
  65. S.I. Nikitenko and P. Moisy, "Formation of Higher Chloride Complexes of Np(IV) and Pu(IV) in Water-Stable Room-Temperature Ionic Liquid [BuMeIm] [$Tf_2N$]", Inorg. Chem., 45, pp. 1235-1242 (2006). https://doi.org/10.1021/ic050728m
  66. A.I. Bhatt, N.W. Duffy, D. Collison, I. May, and R.G. Lewin, "Cyclic Voltammetry of Th(IV) in the Roomtemperature Ionic Liquid [$Me_3NnBu][N(SO_2CF_3)_2]$", Inorg. Chem., 45, pp. 1677-1682 (2006). https://doi.org/10.1021/ic051750i
  67. P.Y. Chen and C.L. Hussey, "Electrodeposition of Cesium at Mercury Electrodes in the Tri-1-butylmethylammonium Bis((trifluoromethyl)sulfonyl)imide Room-temperature Ionic Liquid", Electrochim. Acta, 49, pp. 5125-5138 (2004). https://doi.org/10.1016/j.electacta.2004.06.025
  68. J.P. Schoebrechts, B.P. Gilbert, and G. Duyckaerts, "Electrochemical and Spectroscopic Studies of the Lanthanides in the $AlCl_3$+1-n-butylpyridinium Chloride Melt at $40^{\circ}C$: Part I. The Yb(III-II), Sm(IIIII) Systems", J. Electroanal. Chem. Interfacial Electrochem., 145, pp. 127-138 (1983). https://doi.org/10.1016/S0022-0728(83)80298-8
  69. J.P. Schoebrechts, B.P. Gilbert, and G. Duyckaerts, "Electrochemical and Spectroscopic Studies of the Lanthanides in the $AlCl_3$+1-n-butylpyridinium Chloride Melt at $40^{\circ}C$: Part II. The Tm(III-II), Eu(IIIII) Systems, Application of Nugent's Linearization Method", J. Electroanal. Chem. Interfacial Electrochem., 145, pp. 139-146 (1983). https://doi.org/10.1016/S0022-0728(83)80299-X
  70. A.I. Bhatt, I. May, V.A. Volkovich, D. Collison, M. Helliwell, I.B. Polovov, and R.G. Lewin, "Structural Characterization of a Lanthanum Bistriflimide Complex, $La(N(SO_2CF_3)_2)_3(H_2O)_3$, and an Investigation of La, Sm, and Eu Electrochemistry in a Room-temperature Ionic Liquid, [$Me_3NnBu$] $[N(SO_2CF_3)_2]$", Inorg. Chem., 44, pp. 4934-4940 (2005). https://doi.org/10.1021/ic048199u
  71. M. Yamagata, Y. Katayama, and T. Miura, "Electrochemical Behavior of Samarium, Europium, and Ytterbium in Hydrophobic Room-temperature Molten Salt Systems", J. Electrochem. Soc., 153, E5-E9 (2006). https://doi.org/10.1149/1.2136088
  72. C.J. Rao, K.A. Venkatesan, K. Nagarajan, T.G. Srinivasan, and P.R. Vasudeva Rao, "Electrochemical Behavior of Europium(III) in N-butyl-N-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide", Electrochim. Acta, 54, pp. 4718-4725 (2009). https://doi.org/10.1016/j.electacta.2009.03.074
  73. M. Jayakumar, K.A. Venkatesan, and T.G. Srinivasan, "Electrochemical Behavior of Fission Palladium in 1-butyl-3-methylimidazolium Chloride", Electrochim. Acta, 52, pp. 7121-7127 (2007). https://doi.org/10.1016/j.electacta.2007.05.049
  74. M. Jayakumar, K.A. Venkatesan, and T.G. Srinivasan, "Electrochemical Behavior of Rhodium(III) in 1-butyl-3-methylimidazolium Chloride Ionic Liquid", Electrochim. Acta, 53, pp. 2794-2801 (2008). https://doi.org/10.1016/j.electacta.2007.10.056
  75. M. Jayakumar, K.A. Venkatesan, T.G. Srinivasan, and P.R. Vasudeva Rao "Electrochemical Behavior of Ruthenium(III), Rhodium(III) and Palladium(II) in 1-butyl-3-methylimidazolium Chloride Ionic Liquid", Electrochim. Acta, 54, pp. 6747-6755 (2009). https://doi.org/10.1016/j.electacta.2009.06.043
  76. D. Allen, G. Baston, A.E. Bradley, T. Gorman, A. Haile, I. Hamblett, J.E. Hatter, M.J.F. Healey, B. Hodgson, R. Lewin, K.V. Lovell, B. Newton, W.R. Pitner, D.W. Rooney, D. Sanders, K.R. Seddon, H.E. Sims, and R.C. Thield, "An Investigation of the Radiochemical Stability of Ionic Liquids", Green Chem., 4, pp. 152-158 (2002). https://doi.org/10.1039/b111042j
  77. L. Berthon, S.I. Nikitenko, I. Bisel, C. Berthon, M. Faucon, B. Saucerotte, N. Zorz, and Ph. Moisy, "Influence of Gamma Irradiation on Hydrophobic Room-temperature Ionic Liquids $[BuMeIm]PF_6$ and [BuMeIm] $(CF_3SO_2)_2N$", Dalton Trans., pp. 2526-2534 (2006).
  78. G. Le Rouzo, C. Lamouroux, V. Dauvois, A. Dannoux, S. Legand, D. Durand, P. Moisly, and G. Moutiers, "Anion Effect on Radiochemical Stability of Room-temperature Ionic Liquids under Gamma Irradiation", Dalton Trans., pp. 6175-6184 (2009).
  79. E. Bosse, L. Berthon, N. Zorz, J. Monget, C. Berthon, I. Bisel, S. Legand, and P. Moisy, "Stability of [$MeBu_3N$][$Tf_2N$] under Gamma Irradiation", Dalton Trans., pp. 924-931 (2008).
  80. N.J. Bridges, A.E. Visser, M.J. Williamson, J.I. Mickalonis, and T.M. Adams, "Effects of Gamma Radiation on Electrochemical Properties of Ionic Liquids", Radiochim. Acta, 98, pp. 243-247 (2010).
  81. L. Yuan, J. Peng, L. Xu, M. Zhai, J. Li, and G. Wei, "Influence of g-radiation on the Ionic Liquid [C4mim] $[PF_6]$ during Extraction of Strontium Ions", Dalton Trans., pp. 6358-6360 (2008).
  82. Y. Ao, J. Peng, L. Yuan, Z. Cui, C. Li, J. Li, and M. Zhai, "Identification of Radiolytic Products of $[C_4mim][NTf_2] $ and Their Effects on the $Sr^{2+}$ Extraction", Dalton Trans., 42, pp. 4299-4305 (2013). https://doi.org/10.1039/c2dt32418k

Cited by

  1. Extraction Behavior of Am(Ⅲ) and Eu(Ⅲ) From Nitric Acid Using Room Temperature Ionic Liquid vol.16, pp.3, 2018, https://doi.org/10.7733/jnfcwt.2018.16.3.347
  2. Extraction Behavior of Uranyl Ion From Nitric Acid Medium by TBP Extractant in Ionic Liquid vol.18, pp.4, 2014, https://doi.org/10.7733/jnfcwt.2020.18.4.457