• Title/Summary/Keyword: 전이온도

Search Result 663, Processing Time 0.03 seconds

Study on Hydrogen Production and CO Oxidation Reaction using Plasma Reforming System with PEMFC (고분자 전해질 연료전지용 플라즈마 개질 시스템에서 수소 생산 및 CO 산화반응에 관한 연구)

  • Hong, Suck Joo;Lim, Mun Sup;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.656-662
    • /
    • 2007
  • Fuel reformer using plasma and shift reactor for CO oxidation were designed and manufactured as $H_2$ supply device to operate a polymer electrolyte membrane fuel cell (PEMFC). $H_2$ selectivity was increased by non-thermal plasma reformer using GlidArc discharge with Ni catalyst simultaneously. Shift reactor was consisted of steam generator, low temperature shifter, high temperature shifter and preferential oxidation reactor. Parametric screening studies of fuel reformer were conducted, in which there were the variations of the catalyst temperature, gas component ratio, total gas ratio and input power. and parametric screening studies of shift reactor were conducted, in which there were the variations of the air flow rate, stema flow rate and temperature. When the $O_2/C$ ratio was 0.64, total gas flow rate was 14.2 l/min, catalytic reactor temperature was $672^{\circ}C$ and input power 1.1 kJ/L, the production of $H_2$ was maximized 41.1%. And $CH_4$ conversion rate, $H_2$ yield and reformer energy density were 88.7%, 54% and 35.2% respectively. When the $O_2/C$ ratio was 0.3 in the PrOx reactor, steam flow ratio was 2.8 in the HTS, and temperature were 475, 314, 260, $235^{\circ}C$ in the HTS, LTS, PrOx, the conversion of CO was optimized conditions of shift reactor using simulated reformate gas. Preheat time of the reactor using plasma was 30 min, component of reformed gas from shift reactor were $H_2$ 38%, CO<10 ppm, $N_2$ 36%, $CO_2$ 21% and $CH_4$ 4%.

Study on Rheological Properties of HBA/HNA Thermotropic Liquid Crystalline Polymer (HBA/HNA계 열방성 액정고분자의 유변학적 특성에 관한 연구)

  • Son, Young-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5216-5220
    • /
    • 2010
  • Rheological measurement of a thermotropic liquid crystalline poymer (TLCP) is not an easy task since their rheological responses are strongly influenced by a thermal history during a processing and thus the reproducibility of the measurement is poor. In order to find out a cause for the strong influence of the thermal history, rheological measurements and DSC observations of the TLCP having various thermal histories were carried out. It was observed that the TLCP used in this study shows liquid-like behavior at a temperature above a crystal-nematic transition temperature ($280^{\circ}C$), but at the same time crystallization can occur at this temperature range and as a consequence the viscosity of the polymer continuously increases. When the samples are heated beyond the $320^{\circ}C$, all crystals thus formed and the thermal histories were observed to disappear. Crystallization rate of the samples annealed above $320^{\circ}C$ was very low at even the lowed temperature ($280^{\circ}C\;{\sim}\;320^{\circ}C$). Therefore, it is concluded that rheological measurements of TLCP used in this study must be performed after annealed above the nematic-isotropic transition temperature for better reproducibility.

Transport Rate of Transition Metal Cations through a Bulk Liquid Membrane Containing $NtnOenH_4$ and $NdienOenH_4$ as Carriers (운반체로 $NtnOenH_4$$NdienOenH_4$를 포함한 액체막을 통한 전이금속 양이온의 운반속도)

  • Kim, Hae Joong;Chang, Jeong Ho;Shin, Young Kook
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.2
    • /
    • pp.77-81
    • /
    • 1997
  • The transport rates of transition metal cations were increased in order of Ni(II)$(NtnOenH_4)$and 1,12,15-triaza-3,4;9,10-dibenzo-5,8-dioxacyclo-heptadecane$(NdienOenH_4)$as carriers. The transport rates of transition metal cations was found to be of first order to the salt concentrations. It was also found that the dissociation process in the transport process is rate determining step. From the measurements of the transport rates at various temperatures, the partition free energies of hydration$({\Delta}G_p)$for the transition metal cations were calculated. The results showed that the order of transport rates of transition metal cations was found to be proportional to the magnitudes of negative value of the partition free energies of hydration$({\Delta}G_p)$.

  • PDF

Prediction of Rheological Properties of Asphalt Binders Through Transfer Learning of EfficientNet (EfficientNet의 전이학습을 통한 아스팔트 바인더의 레올로지적 특성 예측)

  • Ji, Bongjun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.348-355
    • /
    • 2021
  • Asphalt, widely used for road pavement, has different required physical properties depending on the environment to which the road is exposed. Therefore, it is essential to maximize the life of asphalt roads by evaluating the physical properties of asphalt according to additives and selecting an appropriate formulation considering road traffic and climatic environment. Dynamic shear rheometer(DSR) test is mainly used to measure resistance to rutting among various physical properties of asphalt. However, the DSR test has limitations in that the results are different depending on the experimental setting and can only be measured within a specific temperature range. Therefore, in this study, to overcome the limitations of the DSR test, the rheological characteristics were predicted by learning the images collected from atomic force microscopy. Images and rheology properties were trained through EfficientNet, one of the deep learning architectures, and transfer learning was used to overcome the limitation of the deep learning model, which require many data. The trained model predicted the rheological properties of the asphalt binder with high accuracy even though different types of additives were used. In particular, it was possible to train faster than when transfer learning was not used.

Numerical Analysis of Molten Carbonate Fuel Cell Stack Using Computational Fluid Dynamics (CFD를 이용한 용융탄산염 연료전지 스택의 수치모사)

  • Lee, Kab-Soo;Cho, Hyun-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.155-161
    • /
    • 2005
  • In this paper, commercial CFD program FLUENT v5.3 is used for simulation of MCFC stack. Besides using conservation equations included in FLUENT by default, mass change, mole fraction change and heat added or removed due to electrochemical reactions and water gas shift reaction are considered by adding several equations using user defined function. The stacks calculated are 6 and 25 kW class coflow stack which are composed of 20 and 40 unit cells respectively. Simulation results showed that pressure drop took place in the direction of gas flow, and the pressure drop of cathode side is more larger than that of anode side. And the velocity of cathode gas decreased along with the gas flow direction, but the velocity of anode gas increased because of the mass and volume changes by the chemical reactions in each electrodes. Simulated temperature profile of the stack tended to increase along with the gas flow direction and it showed similar results with the experimental data. Water gas shift reaction was endothermic at the gas inlet side but it was exothermic at the outlet side of electrode respectively. Therefore water gas shift reaction played a role in increasing temperature difference between inlet and outlet side of stack. This results suggests that the simulation of large scale commercial stacks need to consider water gas shift reaction.

Thermotropic Liquid Crystalline Behavior of Tri-O-[4-{4'-(cyanophenylazo)phenoxy}]alkyl Celluloses (트리-O-[4-{4'-(시아노페닐아조)페녹시}]알킬 셀룰로오스들의 열방성 액정 거동)

  • Jeong, Seung-Yong;Son, Ho-Min;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.116-125
    • /
    • 2010
  • The thermotropic liquid crystalline behavior of the homologous series of combined-type liquid crystalline polymers, tri-O-{4-(4'-cyanophenylazo)phenoxy}alkyl celluloses (CACETn, where n, the number of methylene units in the spacer, is 2~10) have been investigated. The CACETn with n of 5 and 7 exhibited enantiotropic nematic phases, while other polymers showed monotropic nematic phases. The isotropic-nematic transition temperature($T_{iN}$) increased when n is increased up to 4, but it decreased with increasing n more than 5. The entropy change at $T_{iN}$ also reaches a minimum at n=5, before it increases again for n=6. The sharp change at n=5 may be attributed to the difference in arrangement in the side groups. The nematic-crystalline transition temperatures, in contrast with $T_{iNS}$, exhibited a distinct odd-even effect, suggesting that the average shape of the side chains in the crystalline phase is different from that in the nematic phase. The mesophase properties of CACETn were significantly different from those reported for tri-O-alkyl celluloses and poly[1-{4-(4'-cyanophenylazo)phenoxyalkyloxy}ethylene]s. The results were discussed in terms of the difference in the chemical structures of the main and side chains and the number of the mesogenic units per repeating unit.

Thermotropic Liquid Crystalline Behavior of Penta-O-4-{4'-(cyanophenylazo)phenoxy}alkyl-D-glucopyranoses (펜타-O-4-{4'-(시아노페닐아조)펜옥시}알킬-D-글루코피라노오스들의 열방성 액정 거동)

  • Jeong, Seung Yong;Kim, In Soo;Ma, Yung Dae
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.603-611
    • /
    • 2009
  • Thermotropic liquid crystalline behavior of a homologous series of penta-O-4-{4'-(cyanophenylazo)phenoxy}alkyl-D-glucopyranoses(CAGETn, n = 2~10, the number of methylene units in the spacer) has been investigated. The CAGETn with n of 2 and 7 exhibited enantiotropic nematic phases whereas other derivatives showed monotropic nematic phases. This is the first report of glucose derivatives that form thermotropic nematic phases. The isotropic-nematic transition temperatures ($T_{iNS}$) of CAGETns and their entropy variation at $T_{iN}$ showed the odd-even effect as a function of n. This behavior was rationalized in terms of the change in the average shape of the side chains as the parity of the spacer is varied. This rationalization also accounts for the observed variation of nematic-crystalline phase transition temperatures ($T_{NkS}$) and associoated entropy change at $T_{Nk}$. The entropy change at $T_{iN}$ or $T_{Nk}$ reaches a mininum at n = 3, before it increases again for n = 4. This may be attributed to the difference in the arrangement of the side groups. The mesophase properties of CAGETns were entirely different from those reported for partially or fully alkylated glucopyranoses. This result suggests that the degree of substitution and chemical structure of the substituents play an important role in the formation of the mesophase structures in the liquid crystals.

Sustainable Block Copolymer-based Thermoplastic Elastomers (지속 가능한 블록 공중합체 기반 열가소성 탄성체)

  • Shin, Jihoon;Kim, Young-Wun;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • Block copolymers including ABA triblock architectures are useful as thermoplastic elastomers and toughened plastics depending on the relative glassy and rubbery content. These materials can be blended with other polymers and utilized as additives, toughening agents, and compatibilizers. Most of commercially available block copolymers are derived from petroleum. Renewable alternatives are attractive considering the finite supply of fossil resources on earth and the overall economic and environmental expenses involved in the recovery and use of oil. Furthermore, tomorrow's sustainable materials are demanding the design and implementation with programmed end-of-life. The present review focuses on the preparation and evaluation of new classes of renewable ABA triblock copolymers and also emphasizes on the use of carbohydrate-derived poly(lactide) or plant-based poly(olefins) having a high glass transition temperature and/or high melting temperature for the hard phase in addition to the use of bio-based amorphous hydrocarbon polymers with a low glass transition temperature for the soft components. The combination of multiple controlled polymerizations has proven to be a powerful approach. Precision-controlled synthesis of these hybrid macromolecules has led to the development of new elastomers and tough plastics offering renewability, biodegradability, and high performance.

Comparison and Evaluation of Dynamic Modulus of Hot Mix Asphalt with Different Shift Factors (전이함수 결정법에 따른 아스팔트 혼합물의 동탄성계수 비교평가)

  • Kim, Hyun-Oh;Lee, Kwan-Ho
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.49-61
    • /
    • 2005
  • The dynamic modulus of hot mix asphalt can be determined according to the different combinations of testing temperature and loading frequency. The superposition rule is adapted to get the master curve of dynamic modulus for each hot mix asphalt. There are couple of different methods to get the shift factor which is a key for making the master curve. In this paper, Arrehnius, 2002 AASHTO, and experimental method was employed to get the master curve. Evaluation of dynamic modulus for 25mm base course of hot mix asphalt with granite aggregate and two asphalt binders(AP-3 and AP-5) was carried out. Superpave Level 1 Mix Design with gyratory compactor was adopted to determine the optimum asphalt binder content(OAC) and the measured ranges of OAC were between 4.1% and 4.4%. UTM was used for laboratory test. The dynamic modulus and phase angle were determined by testing on UTM, with 5 different testing temperature(-10, 5, 20, 40, & $55^{\circ}C$) and 5 different loading frequencies(0.05, 0.1, 1, 10, 25 Hz). Using the measured dynamic modulus and phase angle, the input parameters of Sigmoidal function equation to represent the master curve were determined and these will be adopted in FEM analysis for asphalt pavements. The shift factor and activation energy for determination of master curve were calculated.

  • PDF

Thermoresistant properties of bacterioferritin comigratory protein against high temperature stress in Schizosaccharomyces pombe (Schizosaccharomyces pombe에 존재하는 bacterioferritin comigratory protein의 고온 스트레스에 대한 열저항적 성질)

  • Ryu, In Wang;Lee, Su Hee;Lim, Hye-Won;Ahn, Kisup;Park, Kwanghark;Sa, Jae-Hoon;Jeong, Kyung Jin;Lim, Chang-Jin;Kim, Kyunghoon
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.398-405
    • /
    • 2016
  • The Schizosaccharomyces pombe structural gene encoding bacterioferritin comigratory protein (BCP) was previously cloned using the shuttle vector pRS316 to generate the BCP-overexpressing plasmid pBCP10. The present work aimed to evaluate the thermoresistant properties of BCP against high temperature stress using the plasmid pBCP10. When the S. pombe cells were grown to the early exponential phase and shifted from $30^{\circ}C$ to $37^{\circ}C$ or $42^{\circ}C$, the S. pombe cells harboring pBCP10 grew significantly more at both $37^{\circ}C$ and $42^{\circ}C$ than the vector control cells. After 6 h of the shifting to higher incubation temperatures, they contained the lower reactive oxygen species (ROS) and nitrite content, an index of nitric oxide (NO), than the vector control cells. After the temperature shifts, total glutathione (GSH) content and total superoxide dismutase (SOD) activities were much higher in the S. pombe cells harboring pBCP10 than in the corresponding vector control cells. Taken together, the S. pombe BCP plays a thermoresistant role which might be based upon its ability both to down-regulate ROS and NO levels and to up-regulate antioxidant components, such as total GSH and SOD, and subsequently to maintain thermal stability.