Thermotropic Liquid Crystalline Behavior of Penta-O-4-{4'-(cyanophenylazo)phenoxy}alkyl-D-glucopyranoses

펜타-O-4-{4'-(시아노페닐아조)펜옥시}알킬-D-글루코피라노오스들의 열방성 액정 거동

  • Jeong, Seung Yong (Center for Photofuctional Energy Materials, Dankook University) ;
  • Kim, In Soo (Center for Photofuctional Energy Materials, Dankook University) ;
  • Ma, Yung Dae (Center for Photofuctional Energy Materials, Dankook University)
  • 정승용 (단국대학교 광 에너지 연구센터) ;
  • 김인수 (단국대학교 광 에너지 연구센터) ;
  • 마영대 (단국대학교 광 에너지 연구센터)
  • Received : 2009.03.19
  • Accepted : 2009.09.01
  • Published : 2009.12.10

Abstract

Thermotropic liquid crystalline behavior of a homologous series of penta-O-4-{4'-(cyanophenylazo)phenoxy}alkyl-D-glucopyranoses(CAGETn, n = 2~10, the number of methylene units in the spacer) has been investigated. The CAGETn with n of 2 and 7 exhibited enantiotropic nematic phases whereas other derivatives showed monotropic nematic phases. This is the first report of glucose derivatives that form thermotropic nematic phases. The isotropic-nematic transition temperatures ($T_{iNS}$) of CAGETns and their entropy variation at $T_{iN}$ showed the odd-even effect as a function of n. This behavior was rationalized in terms of the change in the average shape of the side chains as the parity of the spacer is varied. This rationalization also accounts for the observed variation of nematic-crystalline phase transition temperatures ($T_{NkS}$) and associoated entropy change at $T_{Nk}$. The entropy change at $T_{iN}$ or $T_{Nk}$ reaches a mininum at n = 3, before it increases again for n = 4. This may be attributed to the difference in the arrangement of the side groups. The mesophase properties of CAGETns were entirely different from those reported for partially or fully alkylated glucopyranoses. This result suggests that the degree of substitution and chemical structure of the substituents play an important role in the formation of the mesophase structures in the liquid crystals.

펜타-O-4-{4'-(시아노페닐아조)펜옥시}알킬-D-글루코피라노스 동족체들(CAGETn, n = 2~10, 유연격자 중의 메틸렌 단위들의 수)의 열방성 액정 특성을 검토하였다. n = 2, 7인 CAGETn은 쌍방성 네마틱 상들을 형성하는 반면 나머지 유도체들은 단방성 네마틱 상들를 형성하였다. 이것이 글루코오스 유도체가 네마틱 상들을 형성한다고 하는 최초의 보고이다. CAGETns의 액체 상에서 네마틱 상으로의 전이온도들($T_{iNS}$) 그리고 $T_{iN}$에서의 엔트로피 변화는 n의 함수로서 홀수-짝수 효과를 나타냈다. 이러한 거동은 유연격자의 홀수-짝수의 변화에 기인한 곁사슬들의 평균적인 형태변화의 견지에서 합리적으로 설명된다. CAGETns에서 관찰되는 네마틱 상에서 결정 상으로의 전이온도들($T_{NkS}$) 그리고 $T_{Nk}$에서의 엔트로피 변화도 동일한 관점에서 설명된다. $T_{iN}$ 혹은 $T_{Nk}$에서의 엔트로피 변화는 n = 4에서 재차 증가하기 전에 n = 3에서 최소를 나타냈다. 이러한 사실은 곁사슬 그룹들의 배열의 차이에 의해 초래되는 것으로 생각된다. CAGETns의 액정 상의 특성은 글루코오스에 알킬 그룹을 에테르 결합으로 부분적으로 혹은 완전치환시켜 얻은 유도체들에 대해 보고된 결과와 전혀 달랐다. 본 연구결과는 치환기들의 치환도와 화학구조가 액정들의 구조형성에 있어서 중요한 역할을 함을 시사한다.

Keywords

Acknowledgement

Grant : 광전자용 광기능 고분자 필름 연구

Supported by : 경기도

References

  1. V. A. Mallia and N. Tamaoki, Chem. Mater., 15, 3237 (2003) https://doi.org/10.1021/cm034127+
  2. V. A. Mallia and N. Tamaoki, J. Mater. Chem., 13, 219 (2003) https://doi.org/10.1039/b210541a
  3. N. Tamaoki, Y. Aoki, M. Moriyama, and M. Kidowaki, Chem. Mater., 15, 719 (2003) https://doi.org/10.1021/cm020234c
  4. J. W. Lee, Y.-S. Park, J.-I. Jin, M. F. Achard, and F. Hardouin, J. Mater. Chem., 13, 1367 (2003) https://doi.org/10.1039/b211932c
  5. K.-N. Kim, E.-D. Do, Y.-W. Kwon, and J.-I. Jin, Liq. Cryst., 32, 229 (2005) https://doi.org/10.1080/02678290412331329305
  6. C. C. Wu, Mater. Lett., 61, 1380 (2007) https://doi.org/10.1016/j.matlet.2006.07.035
  7. C. T. Imrie and G. R. Luckhurst, Handbook of Liquid Crystals, eds. D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, 2B, 801, Wiley-VCH, Weinheim-New York (1998)
  8. J.-I. Jin, Mol. Cryst. Liq. Cryst., 267, 249 (1995) https://doi.org/10.1080/10587259508034002
  9. K.-N. Kim, E.-D. Do, Y.-W. Kwon, and J.-I. Jin, Liq. Cryst., 33, 511 (2006) https://doi.org/10.1080/02678290600617546
  10. S.-W. Cha, J.-I. Jin, M. Laguerre, M. F. Achard, and F. Hardouin, Liq. Cryst., 26, 1325 (1999) https://doi.org/10.1080/026782999203995
  11. C. Zhang, L. Jin, B. Yin, M. Jamil, and Y.-J. Jeon, Liq. Cryst., 35, 39 (2008) https://doi.org/10.1080/02678290701751764
  12. S. Abraham, V. A. Millia, K. V. Ratheesh, N. Tamaoki, and S.Das, J. Am. Chem. Soc., 128, 7692 (2006) https://doi.org/10.1021/ja061575k
  13. A. T. M. Marcelis, A. Koudijs, and E. J. R. Sudholter, Mol. Cryst Liq. Cryst., 411, 193 (2004) https://doi.org/10.1080/15421400490435035
  14. A. T. M. Marcelis, A. Koudijs, and E. J. R. Sudholter, Liq. Cryst., 27, 1515 (2000) https://doi.org/10.1080/026782900750018681
  15. C. V. Yelamaggad, S. A. Nagamani, U. S. Hiremath, and G. G. Nair, Liq. Cryst., 28, 1009 (2001) https://doi.org/10.1080/02678290110039499
  16. A. T. M. Marcelis, A. Koudijs, and E. J. R. Sudholter, Liq. Cryst., 18, 843 (1995) https://doi.org/10.1080/02678299508036701
  17. C. C. Wu, Liq. Cryst., 34, 283 (2007) https://doi.org/10.1080/02678290601111390
  18. C. V. Yelamaggad, M. Mathews, T. Fujita, and N. Iyi, Liq. Cryst.,30, 1079 (2007) https://doi.org/10.1080/0267829031000152987
  19. C. V. Yelamaggad, S. A. Nagamani, D. S. S. Rao, S. K. Prasad, and U. S. Hiremath, Mol. Cryst. Liq. Cryst., 363, 1 (2001) https://doi.org/10.1080/10587250108025254
  20. A. D. Campo, A. Meyer, E. Perez, and A. Bello, Liq. Cryst., 31, 109 (2004) https://doi.org/10.1080/0267829032000159105
  21. A. E. Blatch and G. R. Luckhurst, Liq. Cryst., 27, 775 (2000) https://doi.org/10.1080/026782900202264
  22. T. Fukuda, Y. Tsujii, and T. Miyamoto, Macromol. Symp., 99, 257 (1995) https://doi.org/10.1002/masy.19950990127
  23. A. N. Cammidge and R. J. Bushby, Handbook of Liquid Crystals, eds. D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, 2B, 693, Wiley-VCH, Weinheim-New York (1998)
  24. J. W. Goodby, Liq. Cryst., 24, 25 (1998)
  25. F. Dumoulin, D. Lafont, P. Boullanger, G. Mackenzie, G. H. Mehl, and J. W. Goodby, J. Am. Chem. Soc., 124, 13737 (2002) https://doi.org/10.1021/ja020396+
  26. S. Diele and P. Goring, Handbook of Liquid Crystals, eds. D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, 2B, 887, Wiley-VCH, Weinheim-New York (1998)
  27. D. Blunk, K. Praefcke, and V. Vill, Handbook of Liquid Crystals, eds. D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, 3, 305, Wiley-VCH, Weinheim-New York (1998)
  28. S.-Y. Jeong and Y.-D. Ma, Chemical Materials (Dankook University), 3, 29 (2006)
  29. S.-Y. Jeong and Y.-D. Ma, J. Korean Ind. Eng. Chem., 18, 475 (2007)
  30. J.-H. Kim and Y.-D. Ma, J. Korean Ind. Eng. Chem., 15, 113 (2004)
  31. S.-Y. Jeong and Y.-D. Ma, Polymer (Korea), 31, 58 (2007)
  32. S.-Y. Jeong and Y.-D. Ma, Polymer (Korea), 32, 230 (2008)
  33. V. Shibaev, A. Bobrovsky, and N. Boiko, Prog. Polym. Sci., 28, 729 (2003) https://doi.org/10.1016/S0079-6700(02)00086-2
  34. L. Brehmer, Polymer Sensors and Actuators, eds. Y. Osada and D. De Rossi, 15, Springer-Verlag, Berlin (2002)
  35. S. Kurihara, K. Iwamoto, and T. Nonaka, J. Chem. Soc., Chem. Commum., 2195 (1995)
  36. S. Kurihara, K. Iwamoto, and T. Nonaka, Polymer, 39, 3565 (1998) https://doi.org/10.1016/S0032-3861(97)10268-3
  37. A. Takada, T. Fukuda, T. Miyamoto, and J. Watanabe, Cell. Chem.Technol., 24, 693 (1990)
  38. N. Laurent, D. Lafont, F. Dumolin, P. Boullanger, G. Mackenzie, P. H. J. Kouwer, and J. W. Goodby, J. Am. Chem. Soc., 125, 15499 (2003) https://doi.org/10.1021/ja037347x
  39. H. Ringsdorf and H.-W. Schmidt, Makromol. Chem., 185, 1327 (1984) https://doi.org/10.1002/macp.1984.021850706
  40. C. T. Imrie, T. Schleeh, F. E. Karasz, and G. S. Attard, Macromolecules, 26, 539 (1993) https://doi.org/10.1021/ma00055a020
  41. A. A. Craig, I. Winchester, P. C. Madden, P. Larcey, I. W. Hamley, and C. T. Imrie, Polymer, 39, 1197 (1998)
  42. S.-Y. Jeong, J.-Y. Lee, and Y.-D. Ma, Polymer (Korea), 33, 297 (2009)
  43. L. Andruzzi, A. Altomare, F. Ciardelli, R. Solaro, S. Hvilsted, and P. S. Ramanujam, Macromolecules, 32, 448 (1999) https://doi.org/10.1021/ma980160j
  44. S.-Y. Jeong and Y.-D. Ma, Polymer (Korea), 32, 169 (2008)
  45. J.-W. Lee, J.-I. Jin, B.-W. Jo, J.-S. Kim, W.-C. Zin, and Y.-S. Kang, Acta Polym., 50, 399 (1999) https://doi.org/10.1002/(SICI)1521-4044(19991201)50:11/12<399::AID-APOL399>3.0.CO;2-7
  46. A. A. Craig and C. T. Imrie, Macromolecules, 32, 6215 (1999) https://doi.org/10.1021/ma990525f
  47. V. Percec and C. Pugh, Side Chain Liquid Crystal Polymers, ed. C. B. McArdle, 30, Chapman and Hall, New York (1989)
  48. M. Ratloh, J. Stumpe, L. Stachanov, S. Kostromin, and V. Shibaev, Mol. Cryst. Liq. Cryst., 352, 149 (2000) https://doi.org/10.1080/10587250008023172
  49. C. Pugh and A. L. Kiste, Handbook of Liquid Crystals, eds. D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, 3, 123, Wiley-VCH, Weinheim-New York (1998)
  50. T. Yamaguchi, T. Asada, H. Hayashi, and N. Nakamura, Macromolecules, 22, 1141 (1989) https://doi.org/10.1021/ma00193a024
  51. A. A. Craig and C. T. Imrie, Macromolecules, 28, 3617 (1995) https://doi.org/10.1021/ma00114a015
  52. A. A. Craig and C. T. Imrie, J. Mater. Chem., 4, 1705 (1994) https://doi.org/10.1039/jm9940401705
  53. S.-Y. Jeong and Y.-D. Ma, Polymer (Korea), 32, 489 (2008)
  54. S.-Y. Jeong and Y.-D. Ma, Polymer (Korea), 33, 144 (2009)
  55. C. T. Imrie, F. E. Karasz, and G. A. Attard, Macromolecules, 26, 3803 (1993) https://doi.org/10.1021/ma00067a013
  56. C. T. Imrie, F. E. karasz, and G. S. Attard, Macromolecules, 26, 545 (1993) https://doi.org/10.1021/ma00055a021
  57. C. T. Imrie, F. E. karasz, and G. S. Attard, Macromolecules, 25, 1278 (1992) https://doi.org/10.1021/ma00030a012
  58. Z. Komiya and R. R. Schrock, Macromolecules, 26, 1393 (1993) https://doi.org/10.1021/ma00058a031
  59. Z. Komiya, C. Pugh, and R. R. Schrock, Macromolecules, 25, 6586 (1992) https://doi.org/10.1021/ma00050a031
  60. Z. Komiya, C. Pugh, and R. R. Schrock, Macromolecules, 25, 3609 (1992) https://doi.org/10.1021/ma00040a001
  61. S.-Y. Jeong and Y.-D. Ma, Polymer (Korea), 33, 58 (2009)
  62. G. W. Gray and J. W. G. Goodby, Smetic Liquid Crystals, 1, Leonard Hill, Glasgow and London (1984)
  63. J. W. Goodby, Handbook of Liquid Crystals, eds. D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, 2A, 411, Wiley-VCH, Weinheim-New York (1998)
  64. S.-Y. Jeong, H.-M. Son, and Y.-D. Ma, in press
  65. A. T. M. Macelis, A. Koudijs, and E. J. R. Sudholter, J. Mater. Chem., 6, 1469 (1996) https://doi.org/10.1039/jm9960601469
  66. S.-Y. Jeong and Y.-D. Ma, Chemical Materials (Dankook University),4, 19 (2007)
  67. P. A. Henderson, A. G. Cook, and C. T. Imrie, Liq. Cryst., 31, 1427 (2004) https://doi.org/10.1080/02678290412331298067
  68. A. T. M. Macelis, A. Koudijs, E. A. Klop, and E. J. R. Sudholter, Liq. Cryst., 28, 881 (2001) https://doi.org/10.1080/02678290110041991
  69. N. Tamaoki, H. Matsuda, and A. Takahashi, Liq. Cryst., 28, 1823 (2001) https://doi.org/10.1080/02678290110082365
  70. V. Percec, A. D. Asandei, D. H. Hill, and D. Crawford, Macromolecules, 32, 2597 (1999) https://doi.org/10.1021/ma9900129
  71. B.-Q. Chen, A. Kameyama, and T. Nishikubo, Macromolecules, 32, 6485 (1999) https://doi.org/10.1021/ma990348i
  72. T. Pfeuffer, D. Hanft, and P. Strohriegl, Liq. Cryst., 29, 1555 (2002) https://doi.org/10.1080/0267829021000034817