• Title/Summary/Keyword: 전열 해석

Search Result 187, Processing Time 0.043 seconds

Insulation Performance Evaluation of the Curtain Wall Anchoring Unit by 3D Heat Transfer Simulation and Life Cycle Cost Analysis (3차원 전열해석 및 생애비용 분석을 통한 커튼월 앵커링 유닛의 단열성능 향상 방안 평가)

  • Kang, Seung-Hee;Song, Seung-Yeong
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.63-70
    • /
    • 2003
  • It is very important to improve the insulation performance of curtain wall anchoring unit since it is composed of materials with high thermal conductivity, such as aluminium, steel and so on. This study aims to evaluate the heating energy performance and economical efficiency of various alternatives which are different in position and material of insulation. As results, alternative of inserting the urethane washer & pad and coating the anchoring unit with urethane foam can improve the heating energy performance and L.C.C(Life Cycle Cost) by 6.33% and 0.95%, respectively, as compared with the existing case.

The Analysis and Development of Electron Beam Filament (전자빔 필라멘트의 해석 및 개발)

  • Lee, Jeong-Ick;Lee, Eung-Seok
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.43-45
    • /
    • 2008
  • 박막 제작공정은 반도체 제작 공정, 고정밀도의 하드디스크 및 레이저 디스크 기술, LCD/P에 DML평판 디스크 플레이어 제작 공정에 있어 중요한 기술이다. 더욱이, 이 공정은 이동 전화 커버의 증착 및 전자 차폐의 일반기술, 램프의 반사판, 화장품 용기, 몇몇 상품에 있어 카메라 렌즈의 광학 표면 코팅과 코팅 필름 제작에 사용된다. 본 연구의 주요목적은 반도체 제작 공정과 많은 산업 분야에서 기본 재료로 사용되는 전영저항의 개발에 있다. 개발 공정은 다음과 같다. 전자빔이 최상의 진공 분위기에서 텅스텐 필라멘트의 열에 의해 방출된다. 그때 전자는 높은 전압에서 가속화된다. 전자들은 반대 재료에 충돌되고, 반대편 재료는 발생 열에 의해 코팅된다. 1차년도 연구목적은 고성능 전열 저항체 개발을 위한 지름 당 필라멘트 선의 기계적 특성을 조사하고 CAE 해석을 수행하며, 2차 년도에는 대량 생산 라인 구축을 위한 자동검사 라인 개발에 초점이 맞추어져 있다. 만일, 본 연구를 통해 전열 저항체가 개발된다면, 그 제품은 고효율, 외국제품 대비 가격 경쟁력을 가지므로 제품 경쟁력을 가질 수 있을 것으로 생각된다.

  • PDF

A study on the flow induced vibration on a heat exchanger circular cylinder (열교환 단일 원관의 유동 유발 진동 특성에 관한 연구)

  • Ha, Ji Soo;Lee, Boo Youn;Shim, Sung Hun
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.109-114
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed for the structural safe operation of the heat exchanger to establish the characteristics of flow induced vibration in the tube array. The researches for the flow induced vibration of typical heat exchangers have been conducted and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. The present study examined the results of the previous experimental researches for the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared from the present CFD analysis. For the previous mentioned purpose, the present CFD analysis introduced a single circular cylinder and calculated with the unsteady laminar flow over the cylinder. The characteristics of vortex shedding and lift fluctuation over the cylinder was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift PSD over a single circular cylinder was established from the present CFD study.

The Power Spectral Density Characteristics of Lift and Drag Fluctuation on a Heat Exchanger Circular Tube (열교환 단일 원관의 양력과 항력 변동에 따른 PSD 특성 연구)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.35-40
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed for the structural safe operation of the heat exchanger to establish the characteristics of flow induced vibration in the tube array. The researches for the flow induced vibration of typical heat exchangers have been conducted and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. The present study examined the results of the previous experimental researches for the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared from the present CFD analysis. For the previous mentioned purpose, the present CFD analysis introduced a single circular cylinder and calculated with the unsteady laminar flow over the cylinder. The characteristics of vortex shedding and lift and drag fluctuation over the cylinder was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift and drag PSD over a single circular cylinder was established from the present CFD study.

Investigation on Effect of Distance Between Two Collinear Circumferential Surface Cracks on Primary Water Stress Corrosion Crack Growth in Alloy 600TT Steam Generator Tubes (Alloy 600TT 증기발생기 전열관내 일렬 원주방향 표면 일차수응력 부식균열 성장에 미치는 균열 간격의 영향 고찰)

  • Heo, Eun-Ju;Kim, Jong-Sung;Jeon, Jun-Young;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.269-273
    • /
    • 2015
  • The study investigated the effect of the distance between two collinear circumferential surface cracks on the primary stress corrosion crack (PWSCC) growth in alloy 600TT steam generator tubes using a finite element damage analysis based on the PWSCC initiation model and macroscopic phenomenological damage mechanics approach. The damage analysis method was verified by comparing the results to the previous study results. The verified method was applied to collinear circumferential surface PWSCCs. As a result, it was found that the collinear cracks showed earlier coalescence and penetration times than the a single crack, and the times increased with the distance. In addition, it is expected that penetration may occur before coalescence of two cracks if they are more than a specific distance apart.

A Study on the Heat Transfer Characteristics in the Composite Heat Pipe as Modeling Turbine Rotor (터어빈 회전차를 모델로하는 복합 히이트파이프의 전열특성에 대한 연구)

  • Kwon, Sun-Sok;Jang, Yeong-Suc;Yoo, Byung-Wook
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.120-132
    • /
    • 1993
  • The purpose of this research is to study the characteristics of heat transfer in composite rotary heat pipe as modeled turbine rotating by a finite element analysis and experiment. Nu number, Re number, Pr number and dimensionless condensate layer thickness by thermal input and revolutions per minute were given as analysis factors. The comparison between calculated and experimental data showed similar tendency. Therefore the analysis method may be useful to predict the performance of composite heat pipe. The resistance on heat pipe showed the best effect of heat transfer by film condensation, by decreasing film condensation, the heat transfer rate from condenser was increased rapidly. The dimensionless condensate layer thickness according to Re number at given Pr number showed constant values, the dimensionless condensate layer thickness is proportionate to the square root of inverse of revolution number per minute. In this study Nu=A$({\delta}({\omega}/v)^{-1/2}Re^B)$ is used to the convection heat transfer coefficient and A=0.963, B=0.5025 were obtained as analysis predicts.

  • PDF

Numerical Analysis of Self-Supported Earth Retaining Wall with Stabilizing Piles (2열 자립식 흙막이 공법의 거동특성에 관한 수치해석적 연구)

  • Sim, Jae-Uk;Jeong, Sang-Seom;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.35-46
    • /
    • 2015
  • In this study, the behavior of self-supported earth retaining wall with stabilizing piles was investigated by using a numerical study and field tests in urban excavations. This earth retaining wall can provide stable support against lateral earth pressures through its use of stabilizing piles that provide passive resistance to lateral earth pressures arising due to ground excavations. Field tests at two sites were performed to verify the performance of instrumented retaining wall with stabilizing piles. Furthermore, detailed 3D numerical analyses were conducted to provide insight into the in situ wall behavior. The 3D numerical methodology in the present study represents the behavior of the self-supported earth retaining wall with stabilizing piles. A number of 3D numerical analyses were carried out on the self-supported earth retaining wall with stabilizing piles to assess the results stemming from wide variations of influencing parameters such as the soil condition, the pile spacing, the distance between the front pile and the rear pile, and the pile embedded depth. Based on the results of the parametric study, the maximum horizontal displacement and the maximum bending moment significantly decreased when the retaining wall with stabilizing piles is used. Moreover, the horizontal displacement reduction effect of influencing parameters such as the pile spacing and the distance between the front pile and the rear pile is more sensitive in sandy soil, with a higher friction angle compared to clayey soil. In engineering practice, reducing the pile spacing and increasing the distance between the front pile and the rear pile can effectively improve the stability of the self-supported earth retaining wall with stabilizing piles.