DOI QR코드

DOI QR Code

Numerical Analysis of Self-Supported Earth Retaining Wall with Stabilizing Piles

2열 자립식 흙막이 공법의 거동특성에 관한 수치해석적 연구

  • Sim, Jae-Uk (Dept. of Civil and Environmental Eng., Yonsei Univ.) ;
  • Jeong, Sang-Seom (Dept. of Civil and Environmental Eng., Yonsei Univ.) ;
  • Lee, Jun-Hwan (Dept. of Civil and Environmental Eng., Yonsei Univ.)
  • 심재욱 (연세대학교 토목환경공학과) ;
  • 정상섬 (연세대학교 토목환경공학과) ;
  • 이준환 (연세대학교 토목환경공학과)
  • Received : 2015.01.29
  • Accepted : 2015.04.10
  • Published : 2015.05.31

Abstract

In this study, the behavior of self-supported earth retaining wall with stabilizing piles was investigated by using a numerical study and field tests in urban excavations. This earth retaining wall can provide stable support against lateral earth pressures through its use of stabilizing piles that provide passive resistance to lateral earth pressures arising due to ground excavations. Field tests at two sites were performed to verify the performance of instrumented retaining wall with stabilizing piles. Furthermore, detailed 3D numerical analyses were conducted to provide insight into the in situ wall behavior. The 3D numerical methodology in the present study represents the behavior of the self-supported earth retaining wall with stabilizing piles. A number of 3D numerical analyses were carried out on the self-supported earth retaining wall with stabilizing piles to assess the results stemming from wide variations of influencing parameters such as the soil condition, the pile spacing, the distance between the front pile and the rear pile, and the pile embedded depth. Based on the results of the parametric study, the maximum horizontal displacement and the maximum bending moment significantly decreased when the retaining wall with stabilizing piles is used. Moreover, the horizontal displacement reduction effect of influencing parameters such as the pile spacing and the distance between the front pile and the rear pile is more sensitive in sandy soil, with a higher friction angle compared to clayey soil. In engineering practice, reducing the pile spacing and increasing the distance between the front pile and the rear pile can effectively improve the stability of the self-supported earth retaining wall with stabilizing piles.

본 연구에서는 최근 국내에서 사용이 증가하고 있는 2열 자립식 흙막이 공법에 있어서 안정성에 영향을 미치는 주요 설계인자들을 분석하고 설계기준을 제안하기 위하여 현장적용 결과의 분석 및 3차원 유한차분 해석을 수행하였다. 지반특성에 따른 본 공법의 거동을 분석하기 위하여 사질토가 지배적인 현장과 점성토가 지배적인 2개의 현장에 적용을 수행하였으며, 굴착에 따른 흙막이 벽체의 수평변위 및 휨모멘트를 분석하였다. 3차원 유한차분 모델링 기법의 타당성을 검증하기 위하여 현장적용 결과와 비교 분석을 수행한 결과, 본 연구의 수치해석 모델링 기법은 본 공법의 굴착에 따른 거동을 합리적으로 모사하는 것으로 나타났다. 또한 흙막이 벽체를 구성하는 전열말뚝(엄지말뚝) 및 후열말뚝(억지말뚝)의 간격(S), 전열말뚝과 후열말뚝간의 거리(D), 굴착심도(H) 및 말뚝의 근입깊이(Z) 등, 본 공법의 주요 설계인자들의 영향 정도를 분석하기 위하여 다양한 경우의 3차원 유한차분 모델링 및 해석을 수행하였다. 그 결과, 굴착에 따라 발생하는 흙막이 벽체의 최대 수평변위는 전열말뚝 및 후열말뚝의 간격의 감소, 전열말뚝과 후열말뚝간의 거리의 증가 및 말뚝 근입심도의 증가에 따라 감소하였으며, 이러한 특징은 점성토 조건의 지반보다는 사질토 조건의 지반에서 보다 명확하게 나타나는 것을 확인할 수 있었다.

Keywords

References

  1. Ashour, M. and Ardalan, H. (2012), "Analysis of Pile Stabilized Slopes based on Soil-pile Interaction", Computers and Geotechnics, Vol.39, pp.85-97. https://doi.org/10.1016/j.compgeo.2011.09.001
  2. Chen, C. Y. and Martin, G. R. (2002), "Soil-structure Interaction for Landslide Stabilizing Piles", Computers and Geotechnics, Vol.29(5), pp.363-386. https://doi.org/10.1016/S0266-352X(01)00035-0
  3. Clayton, C. R. and Milititsky, J. (1986), Earth pressure and earth-retaining structures, University of Surrey Press, London.
  4. Clough, G. W. and O'Rourke, T. D. (1990), "Construction Induced Movements of in Situ Walls", Proceedings of Design and Performance of Earth Retaining Structures, Vol.25, pp.439-470.
  5. Dappolonia, E., Alperstein, R., and Dappolonia, D. J. (1967), "Behavior of a Colluvial Slope", Journal of Soil Mechanics & Foundations Div, Vol.93, pp.447-473.
  6. Hassiotis, S., Chameau, J. L., and Gunaratne, M. (1997), "Design Method for Stabilization of Slopes with Piles", Journal of Geotechnical and Geoenvironmental Engineering, Vol.123(4), pp.314-323. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(314)
  7. ITASCA Consulting Group (2005), FLAC3D, Minneapolis, USA.
  8. Ito, T. and Matsui, T. (1975), "Methods to Estimate Lateral Force Acting on Stabilizing Piles", Soils and Foundations, Vol.15(4), pp. 43-60. https://doi.org/10.3208/sandf1972.15.4_43
  9. Jeong, S. S., Kim, B. C., Won, J. O., and Lee, J. H. (2003), "Uncoupled Analysis of Stabilizing Piles in Weathered Slopes", Computers and Geotechnics, Vol.30(8), pp.671-682. https://doi.org/10.1016/j.compgeo.2003.07.002
  10. Kim, C. Y., Kwon, J. G., Im, J. C., and Hwang, S. P. (2012), "A Method for Analyzing the Self-supported Earth-retaining Structure Using Stabilizing Piles", Marine Georesources & Geotechnology, Vol.30(4), pp.313-332. https://doi.org/10.1080/1064119X.2011.626669
  11. Kitazima, S. and Kishi, S. (1967), "An Effect of Embedded Pipes to Increase Resistance Against Circular Slides in Soft Clay Foundation", Technical Note of Port and Harbour Research Institute, Vol.29, pp.63-94.
  12. Korea Geotechnical Sociry (2002), Excavation and Earth Retaining Structures (in Korean language), pp.152-153.
  13. Korea Geotechnical Sociry (2013), Korea Specification for Substructures (in Korean language).
  14. Liang, R. and Zeng, S. (2002), "Numerical Study of Soil Arching Mechanism in Drilled Shafts for Slope Stabilization", Soils and Foundations, Vol.42(2), pp.83-92. https://doi.org/10.3208/sandf.42.2_83
  15. Prakash, S. (1962), Behavior of pile groups subjected to lateral load, Ph.D. Thesis, University of Illinois, USA.
  16. Sim, J. U., Park, K. B., Son, S. G., and Kim, S. I. (2009), "A Study on the Behaviour Analysis and Construction Method of the Self-Supported Earth Retaining Wall (SSR) using Landslide Stabilizing Piles", Korean Geotechnical Society, Vol.25(1), pp.41-54.
  17. Won, J. O., You, K. H., Jeong, S. S., and Kim, S. I. (2005), "Coupled Effects in Stability Analysis of Pile-slope Systems", Computers and Geotechnics, Vol.32(4), pp.304-315. https://doi.org/10.1016/j.compgeo.2005.02.006

Cited by

  1. Feasibility study of an earth-retaining structure using in-situ soil with dual sheet piles vol.16, pp.3, 2015, https://doi.org/10.12989/gae.2018.16.3.321
  2. 지반공학 분야에 대한 차분진화 알고리즘 적용성 분석 vol.35, pp.4, 2015, https://doi.org/10.7843/kgs.2019.35.4.27
  3. Reinforcement Effect of Micropile According to the Pile Section Change vol.19, pp.2, 2015, https://doi.org/10.9798/kosham.2019.19.2.185
  4. Investigation of Influencing Factors on the Deformation of Sheet Pile Wall with a Relieving Platform vol.2021, pp.None, 2015, https://doi.org/10.1155/2021/6641072