• Title/Summary/Keyword: 전단차분법

Search Result 50, Processing Time 0.019 seconds

차분법에 의한 복합 박판에서의 비선형 응력 해석

  • 현혜정;김치경
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.11a
    • /
    • pp.429-434
    • /
    • 2000
  • 본 연구에서는 등분포하중을 받는 laminated 박판의 거동해석을 제시하였다. 접착한 두 박판의 비선형 지배방정식을 Von Karman 식을 이용하여 유도하고 박판의 거동을 차분법을 이용하여 수치해석 한다. Interlayer에서의 전단변형을 고려하여 지배방정식에 포함시켜 하중 증분법(load incremental method)으로 기하학 비선형 해석을 수행한다. 하중 증분법에 따른 반복법을 도입하여 비선형 방정식을 해석했다. 해석방법의 타당성을 입증하기 위하여 해석결과들을 기존의 문헌의 결과와 비교, 검토함으로써 본 논문에서 제시한 이론 및 해석방법의 타당성을 입증한다. 차분법의 하중 증분법 알고리즘을 개발하여 예제문제에 대한 수치해석 결과들을 논하였다.(중략)

  • PDF

Analysis of Anisotropic Laminated Cylindrical Shells with Shear Deformation (전단변형을 고려한 비등방성 원통형 쉘의 해석)

  • Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.373-384
    • /
    • 1999
  • The shell structures with composite materials have the advantages in strength, corrosion resistance, and weight reduction. The objective of this study is to analyze anisotropic composite circular cylindrical shells with shear deformation theory. In applying numerical methods to solve differential equations of anisotropic shells, this paper use finite difference method. The accuracy of the numerical method can be improved by taking higher order of interval ${\Delta}$ to reduce error. This study compares the results of finite difference method with the results of ANSYS based on finite element method. Several numerical examples show the advantages of the stiffness increasement when the composite materials aroused. Therefore, it is expected that results of this study give various guides for change of the subtended angles, load cases, boundary conditions, and side-to-thickness ratio.

  • PDF

Elasto-Plastic Behavior of Shear-Deformed Steel Braced Frame Using Finite Difference Method (유한차분법을 이용한 전단변형형 강가새 구조물의 탄소성 거동에 관한 연구)

  • 박일민
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.445-454
    • /
    • 2001
  • This paper is to study elasto-plastic behavior of shear deformed braced frames. Two types of frames are considered , X-type and K-type. The slenderness ratio has been used in the parametric study. The stress-strain curve is assumed tri-linear model, and considered the strain hardening range. The finite difference method is used to solve the load-displacement relationship of the braced frames. For the elastic slope and maximum load, experimental results are compared with theoretical results and its difference remains less than 10%. Therefore suggested method in this paper is reasonable.

  • PDF

Finite Difference Analysis of Laminated Composite Shell Structures with Various Geometrical Shapes (다양한 기하학적 형상을 갖는 복합 적층쉘 구조의 유한차분해석)

  • Park, Hae-Gil;Lee, Sang-Youl;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.24-34
    • /
    • 2010
  • This paper analyzed the partial differential equations of laminated composite shells of revolution by using the finite difference method. The proof that numerical results are reasonable and accurate is obtained through converge ratio analysis and commercial program LUSAS for the structural analysis. The purpose of this study is to examine closely the engineering advantages and to analyze the structural behaviors of the anisotropic shells of revolution. Thus, the relevant reinforcement and most suitable arrangement of fiber to produce the highest strength are proposed through the numerical results according to a variety of parameter study. Namely, the distribution of displacements and stress resultants are analyzed according to the change of meridian's curvature, the ratio of height-width of shell, subtended angle, fiber angle, and so on. Using these distribution, the most suitable shell may be proposed to produce the highest strength. Also, the configuration of the entire laminated composite conical shells is analysed, and a variety of the design criterion of circular conical shell are proposed and studied in engineering view points.

  • PDF

A Study on the Side Shear Developed during Pullout of Suction Pile in Clays using 3D Numerical Analysis (3차원 수치해석을 이용한 점토지반에 설치된 석션파일 인발 시 발현되는 전단응력에 관한 연구)

  • Lee, Myungjae;Youn, Heejung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.59-66
    • /
    • 2014
  • This paper presents the pullout behavior of suction pile using finite difference method; and the commercial software, FLAC3D, was employed for the numerical analyses. The ultimate pullout capacity of suction pile was predicted using conventional equations, and the results were compared with the results from numerical analyses with varying pile diameter, pile length, and the undrained shear strength of clays. Based on the results from 24 analyses, it was found that the failure pattern depends not only on the drainage condition of suction pile, but also on the pile dimensions and the material properties of surrounding soils. The developed side shear (DSS) along the internal surface of the suction pile was collected from numerical analyses, which was used to classify the failure type between sliding failure and tensile failure. Regardless of the external DSS, the high internal DSS tends to result in sliding failure in the numerical analyses, which conforms well to the estimation from conventional equations.

Impossible Differential Cryptanalysis for Block Cipher Structures (블록 암호 구조에 대한 불능 차분 공격)

  • 김종성;홍석희;이상진;임종인;은희천
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.3
    • /
    • pp.119-127
    • /
    • 2003
  • Impossible differential cryptanalysis(IDC) introduced by Biham et. ${al}^{[4]}$ uses impossible differential characteristics. There-fore, a security of a block cipher against IDC is measured by impossible differential characteristics. In this paper, we pro-vide a wildly applicable method to find various impossible differential characteristics of block cipher structures not using the specified form of a round function. Using this method, we can find various impossible differential characteristics for Nyberg's generalized Feistel network and a generalized RC6-like structure. Throughout the paper, we assume round functions used in block cipher structures are bijective.ctive.

Simulation of Viscous Flow around a Circular Cylinder between Parallel Walls

  • Kwag, Seung-Hyun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.212-216
    • /
    • 2002
  • 평행한 벽 내부의 흐르는 규제 속에 원형실린더를 놓고 운동장 해석을 수행하였다. 비압축성 Navier- Stokes 방정식을 풀었고 3차 풍상미분의 수치해법을 이용하였다. 채널 내부에서 실린더의 위치를 이동하면서 벽면의 효과 전단력, 와류의 현장을 규명하였다. 수치처리는 Marker & Cell 기법에 의한 유한차분법을 사용하였다. 본 연구를 통하여 실린더와 벽 경계 사이에서의 생성된 와가 박리 전단에 영향을 미치는 것을 알 수 있었다.

  • PDF

Analysis of Anisotropic Circular Conical Shells with Free Supports (자유경계를 갖는 비등방성 원뿔형 쉘의 해석)

  • Son, Byung Jik;Baik, Han Sol;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.417-428
    • /
    • 2000
  • In recent years, composite materials have been used in civil engineering as well as architecture, automobile, aerospace, shipping industries. Composite materials are composed of two or more different materials to produce desirable properties for structural strength. The shell structures have the advantage of more efficient load resistance due to its curved shape as compared to the plate structures. And the shell structures with composite materials have many advantages in strength, corrosion resistance, and weight reduction. The objective of this study is to analyze circular conical shells with shear deformation effects and to prove the advantage of composite materials. To solve differential equations of conical shells, this paper used finite difference method.

  • PDF

A Comparative Study on Application of FAM and FDM to Small Rectangular Basin Circulation (소규모 사각형 박지순환에 대한 유한해석법과 유한차분법의 비교연구)

  • Choi, Song Yeol;Cho, Won Cheol;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1341-1348
    • /
    • 1994
  • This is a comparative study on applications of finite analytic method (FAM) and finite difference method (FDM) to rectangular smalI basin circulation. To do such a comparison, the circulation model in small rectangular basin is established using FAM and the nurmerical solution from the FAM model is compared with that from the FDM model. As the grid size approaches Von Neumann stablity condition, the convergence time to steady state increases in Askren's model, but does not increase in finite analytic model. Especially in the FAM model, the numerical solution converges stably even in the grid size range beyond the stablity condition whereas that diverges in the FDM model. In the case of large basin Reynolds number, it is found that steady state solution is obtained in the FAM model with smaller calculating steps than those of in the FDM model.

  • PDF

A Study of Localization for Adiabatic Shear Band in WHA(Tungsten Heavy Alloy) (텅스텐 중합금의 단열전단밴드 형성 및 국부화에 대한 연구)

  • Hwang, Doo-Son;Hong, Sung-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.6
    • /
    • pp.18-25
    • /
    • 2007
  • In a plastic metal forming of thermally rate-sensitive material, the localized shear band stems from evolution of a narrow region in which intensive plastic flow occurs. And it give rise to fatal fracture with plastic instability. The objectives of this study are to investigate the localization behavior by using numerical method and predict the failure for WHA(Tungsten Heavy Alloy). In this work, the implicit finite difference scheme is used because of the advantage about convergence and the numerical stability. This study is based on an analysed material with hardening as well as thermally softening behavior which includes isotropic strain hardening and observed the extension of localization within shear band according to material properties.