• Title/Summary/Keyword: 전기화학 모델링

Search Result 83, Processing Time 0.029 seconds

Computational Analysis for a Molten-salt Electrowinner with Liquid Cadmium Cathode (액체 카드뮴 음극을 사용한 용융염 전해제련로 전산해석)

  • Kim, Kwang-Rag;Jung, Young-Joo;Paek, Seung-Woo;Kim, Ji-Yong;Kwon, Sang-Woon;Yoon, Dal-Seong;Kim, Si-Hyung;Shim, Jun-Bo;Kim, Jung-Gug;Ahn, Do-Hee;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • In the present work, an electrowinning process in the LiCl-KCl/Cd system is considered to model and analyze the electrotransport of the actinide and rare-earth elements. A simple dynamic modeling of this process was performed by taking into account the material balances and diffusion-controlled electrochemical reactions in a diffusion boundary layer at an electrode interface between the molten salt electrolyte and liquid cadmium cathode. The proposed modeling approach was based on the half-cell reduction reactions of metal chloride occurring on the cathode. This model demonstrated a capability for the prediction of the concentration behaviors, a faradic current of each element and an electrochemical potential as function of the time up to the corresponding electrotransport satisfying a given applied current based on a galvanostatic electrolysis. The results of selected case studies including five elements (U, Pu, Am, La, Nd) system are shown, and a preliminary simulation is carried out to show how the model can be used to understand the electrochemical characteristics and provide better information for developing an advanced electrowinner.

Measurements and Modeling of the Activity Coefficients and Solubilities of L-alanine in Aqueous Electrolyte Solutions (전해질 수용액에서 L-Alanine의 활동도계수와 용해도의 측정 및 모델링)

  • Lee, Bong-Seop;Kim, Ki-Chang
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.519-533
    • /
    • 2010
  • Activity oefficients and solubilities of L-Alanine in aqueous solutions containing each of four electrolytes(NaCl, KCl, $NaNO_3$ and $KNO_3$) were measured at 298.15 K. The measurements of activity coefficients were carried out in the electrochemical cell coupled with two ion-selective electrodes(cation and anion), and the solubilities were measured by the gravimetric analysis of saturated solutions in equilibrium with the solid phase of L-alanine. To model the activity coefficients and solubilities of amino acid in the amino acid/electrolyte aqueous solutions, thermodynamic relations of the residual Helmholtz free energy in the amino acid/electrolyte aqueous solutions were developed based on the perturbed-chain statistical associating fluid theory(PC-SAFT) combined with the primitive mean spherical approximation(primitive-MSA). In the present model, it is assumed that the zwitterions of L-alanine are associated with each other and cross-associated with water molecules, and also cross-associated with the cation and anion dissociated from an electrolyte(inorganic salt). The activity coefficients and solubilities of L-Alanine calculated from the theoretical model proposed in this work are found to be well agreeable with experimental data.

Modeling of the Thermal Behavior of a Lithium-Ion Battery Pack (리튬 이온 전지 팩의 열적 거동 모델링)

  • Yi, Jae-Shin
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The performance and life-cycle costs of electric vehicle(EV) and hybrid electric vehicle(HEV) depend inherently on battery packs. Temperature uniformity in a pack is an important factor for obtaining optimum performance for an EV or HEV battery pack, because uneven temperature distribution in a pack leads to electrically unbalanced battery cells and reduced pack performance. In this work, a three-dimensional modeling was carried out to investigate the effects of operating conditions on the thermal behavior of a lithium-ion battery pack for an EV or HEV application. Thermal conductivities of various compartments of the battery were estimated based on the equivalent network of parallel/series thermal resistances of battery components. Heat generation rate in a cell was calculated using the modeling results of the potential and current density distributions of a battery cell.

Modeling and Optimization of High Strength Wastewater Treatment Using the Electro Oxidation Process (전기산화공법을 이용한 고농도폐수 처리공정의 모델링 및 최적화)

  • Lee, Hongmin;Lee, Sangsun;Hwang, Sungwon;Jin, Dongbok
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.340-349
    • /
    • 2016
  • Electro oxidation system was designed in this study for the reduction of COD (Chemical Oxygen Demand) from high-strength wastewater, produced during refinery turnaround period. First, BDD (Boron Doped Diamond) electrode was synthesized and electro oxidation system of actual industrial wastewater was developed by adopting the synthesized BDD electrode. The experiments were carried out under various operating conditions under certain range of current density, pH, electrolyte concentration and reaction time. Secondly, reaction kinetics were identified based on the experimental results, and the kinetics were embedded into a genetic mathematical model of the electro oxidation system. Lastly, design and operating parameters of the process were optimized to maximize the efficiency of the pretreatment system. The coefficient of determination ($R^2$) of the model was found to be 0.982, and it proved high accuracy of the model compared with experimental results.

Aqueous Boron Adsorption on Carbonized Nanofibers Prepared from Electrospun Polyacrylonitrile(PAN) Mats (전기방사 후 탄소화된 폴리아크릴로니트릴(PAN) 나노섬유의 수용액 중 붕소 흡착)

  • Hong, So Hee;Han, Sun-Gie;Kim, Su Young;Won, Yong Sun
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.210-217
    • /
    • 2022
  • Boron(B) is a rare resource used for various purposes such as glass, semiconductor materials, gunpowder, rocket fuel, etc. However, Korea depends entirely on imports for boron. Considering the global boron reserves and its current production rate, boron will be depleted on earth in 50 years. Thus, a process including proper adsorbent materials recovering boron from seawater is demanded. This research proposed carbonized nanofibers prepared from electrospun PAN(polyacrylonitrile) mats as promising materials to adsorb boron in aqueous solution. First, the mechanism of boron adsorption on carbonized nanofibers was investigated by DFT(density functional method)-based molecular modeling and the calculated energetics demonstrated that the boron chemisorption on the nitrogen-doped graphene surface by a two-step dehydration is possible with viable activation energies. Then, the electrospun PAN mats were stabilized in air and then carbonized in an argon atmosphere before being immersed in the boric acid aqueous solution. Analytically, SEM(scanning electron microscopy) and Raman measurements were employed to confirm whether the electrospinning and carbonization of PAN mats proceeded successfully. Then, XPS(X-ray photoelectron spectroscopy) peak analysis showed whether the intended nitrogen-doped carbon nanofiber surface was formed and boron was properly adsorbed on nanofibers. Those results demonstrated that the carbonized nanofibers prepared from electrospun PAN mats could be feasible adsorbents for boron recovery in seawater.

REVIEW: Dynamic force effects on batteries (종설: 동적 부하가 배터리에 미치는 영향)

  • Sunghyun, Jie;Taeksoo, Jung;Seunghoon, Baek;Byeongyong, Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.669-679
    • /
    • 2022
  • Lithium-ion battery has been used for lots of electronic devices. With the popularization of batteries, researchers have focused on batteries' electrochemical performances by environmental conditions, such as temperature, vibration, shock and charging state. Meanwhile, due to very serious global warming, car companies have started using lithium-ion batteries even in cars, replacing internal combustion engines. However, batteries have been developed based on non-moving systems which is totally different from vehicles. In the line of the differences, researchers have tried to reveal relationship between variables from dynamic systems and batteries. In this review, we discuss the comprehensive effect of vibration and shock on batteries. We firstly summarize vibration profiles and effect of normal vibration on batteries. We also sum up effect of shock and penetration on batteries and introduce how ultrasound influences on batteries. Lastly, outlook for the battery design as well as dynamic design of EVs are discussed.

Prognostics and Health Management for Battery Remaining Useful Life Prediction Based on Electrochemistry Model: A Tutorial (배터리 잔존 유효 수명 예측을 위한 전기화학 모델 기반 고장 예지 및 건전성 관리 기술)

  • Choi, Yohwan;Kim, Hongseok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.939-949
    • /
    • 2017
  • Prognostics and health management(PHM) is actively utilized by industry as an essential technology focusing on accurately monitoring the health state of a system and predicting the remaining useful life(RUL). An effective PHM is expected to reduce maintenance costs as well as improve safety of system by preventing failure in advance. With these advantages, PHM can be applied to the battery system which is a core element to provide electricity for devices with mobility, since battery faults could lead to operational downtime, performance degradation, and even catastrophic loss of human life by unexpected explosion due to non-linear characteristics of battery. In this paper we mainly review a recent progress on various models for predicting RUL of battery with high accuracy satisfying the given confidence interval level. Moreover, performance evaluation metrics for battery prognostics are presented in detail to show the strength of these metrics compared to the traditional ones used in the existing forecasting applications.

Neural Network Modeling of Charge Concentration of Thin Films Deposited by Plasma-enhanced Chemical Vapor Deposition (플라즈마 화학기상법을 이용하여 증착된 박막 전하 농도의 신경망 모델링)

  • Kim, Woo-Serk;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.108-110
    • /
    • 2006
  • A prediction model of charge concentration of silicon nitride (SiN) thin films was constructed by using neural network and genetic algorithm. SIN films were deposited by plasma enhanced chemical vapor deposition and the deposition process was characterized by means of $2^{6-1}$ fractional factorial experiment. Effect of five training factors on the model prediction performance was optimized by using genetic algorithm. This was examined as a function of the learring rate. The root mean squared error of optimized model was 0.975, which is much smaller than statistical regression model by about 45%. The constructed model can facilitate a Qualitative analysis of parameter effects on the charge concentration.

  • PDF

The Characteristics of Unsteady Flow for Arc Plasma in a $SF_6$ GCB ($SF_6$ 가스차단기에서 아크플라즈마에 의한 비정상 유동특성)

  • Lee, Jong-C.;Ahn, Heui-Sub;Oh, Il-Sung;Kim, Youn-J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.43-45
    • /
    • 2002
  • 가스차단기의 성능은 노즐재질, 접점분리 속도 차단기의 치수 그리고 마크시간 등에 좌우되며 이러한 일련의 현상을 고찰하기 위한 유동현상을 모의하기 위해서는 기본적으로 두 접점의 상대운동 및 접점 사이에서 발생하는 아크 플라즈마(arc plasma)에 의한 전도, 대류, 복사현상 뿐만 아니라 아크전류에 의한 로랜츠힘(Lorentz's force), 용삭(ablation)에 의한 화학작용 등과 같은 매우 복잡한 물리적 현상을 고려해야 한다. 본 연구에서는 차단과정 중 대전류 영역에서의 아크특성과 마크에서 방출되는 강한 복사에너지에 의해 발생하는 PTFE 증기에 의한 영향을 고려하기 위해서 상용 CFD 프로그램인 PHOENICS에 아크 모델링과 고온에서의 $SF_6$-PTFE 혼합가스의 물성치 대입을 위한 보조 프로그램을 작성하여 해석을 수행하였다.

  • PDF

Simulation of elastic curve of SW-CNT for chemical sensor application (화학센서 응용을 위한 SW-CNT의 elastic curve의 Simulation)

  • Lee, K.S.;Na, D.S.;Kim, J.K.;Lee, Y.H.;Iu, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.375-376
    • /
    • 2005
  • 탄소나노튜브는 캔틸레버처럼 주어진 압력에 의해 elastic curve를 형성하게 되는데, 이러한 성질은 탄소나노튜브가 가지고 있는 young's modulus와 구조적인 형태에서 기인한다. 따라서 탄소나노튜브의 변위와 인가된 analyte의 농도에 따른 압력 사이의 관계를 이용해 가스센서로의 적용이 가능하다. 이 번 연구에서는 시뮬레이션을 통해 길이가 30nm 이고 반경이 1.5nm로 모델링 된 단일 벽 탄소나노튜브가 3000ppm와 1000ppm ethanol의 농도에 의해 형성된 elastic curve의 최대변위를 구하고, 농도와 단일 벽 탄소나노튜브의 elastic curve의 최대변위가 비례함을 보였다.

  • PDF