Acknowledgement
This work was partly supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (2021 4000000140, Graduate School of Convergence for Clean Energy Integrated Power Generation) and supported by a 2-Year Research Grant of Pusan National University.
References
- D. Choi, Z. Gao, and W. Jiang, "Attention to global warming," RFS. 33, 1112-1145
- L. Al-Ghussain, "Global warming: Review on driving forces and mitigation," EP & SE. 38, 13-21 (2018).
- B. Scrosati, J. Hassoun, and Y.-K. Sun, "Lithium-ion batteries. A look into the future," Energy Environ. Sci. 4, 3287-3295 (2011). https://doi.org/10.1039/c1ee01388b
- H. Horie, T. Abe, T. Kinoshita, and Y. Shimoida, "A study on an advanced lithium-ion battery system for EVs," WEVJ, 2, 113-119 (2008). https://doi.org/10.3390/wevj2020113
- X. Chen, J. Wang, K. Zhao, and L. Yang, "Electric vehicles body frame structure design method: An approach to design electric vehicle body structure based on battery arrangement," Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 236, 2025-2042 (2022). https://doi.org/10.1177/09544070211052957
- X. Han, M. Ouyang, L. Lu, J. Li, Y. Zheng, and Z. Li, "A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification," J. Power Sources, 251, 38-54 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.029
- Q. Zhang and R. E. White, "Capacity fade analysis of a lithium ion cell," J. Power Sources, 179, 793-798 (2008). https://doi.org/10.1016/j.jpowsour.2008.01.028
- A. Mukhopadhyay and B. W. Sheldon, "Deformation and stress in electrode materials for Li-ion batteries," Progress in Materials Science, 63, 58-116 (2014). https://doi.org/10.1016/j.pmatsci.2014.02.001
- R. Jurgen, "SAE J2464 "EV & HEV Rechargeable Energy Storage System (RESS) safety and abuse testing procedure", SAE Technical Paper, Tech. Rep., 2010.
- D. H. Doughty and E. P. Roth, "A general discussion of Li ion battery safety," ECS Interface, 21, 37 (2012).
- J. M. Hooper and J. Marco, "Experimental modal analysis of lithium-ion pouch cells," J. Power Sources, 285, 247-259 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.098
- J. Galos, K. Pattarakunnan, A. S. Best, I. L. Kyratzis, C. H. Wang, and A. P. Mouritz, "Energy storage structural composites with integrated lithium-ion batteries: a review," Adv. Mater. Technol. 6, 2001059 (2021).
- L. Zhang, Z. Mu, and X. Gao, "Coupling analysis and performance study of commercial 18650 lithium-ion batteries under conditions of temperature and vibration," Energies, 11, 2856 (2018).
- X. Hua and A. Thomas, "Effect of dynamic loads and vibrations on lithium-ion batteries," J. Low Freq. Noise Vib. Act. Control. 40, 1927-1934 (2021). https://doi.org/10.1177/14613484211008112
- M. J. Brand, S. F. Schuster, T. Bach, E. Fleder, M. Stelz, S. Glaser, J. Muller, G. Sextl, and A. Jossen, "Effects of vibrations and shocks on lithium-ion cells," J. Power Sources, 288, 62-69 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.107
- A. B. K. Parasumanna, U. S. Karle, and M. R. Saraf, "Material characterization and analysis on the effect of vibration and nail penetration on lithium ion battery," World Electr. Veh. J. 10, 69 (2019).
- M. Spielbauer, P. Berg, J. Soellner, J. Peters, F. Schaeufl, C. Rosenmuller, O. Bohlen, and A. Jossen, "Experimental investigation of the failure mechanism of 18650 lithium-ion batteries due to shock and drop," J. Energy Storage, 43, 103213 (2021).
- J. Hooper and J. Marco, "Defining a representative vibration durability test for electric vehicle (EV) rechargeable energy storage systems (RESS)," World Electr. Veh. J. 8, 327-338 (2016).
- X. Hua, A. Thomas, and K. Shultis, "Recent progress in battery electric vehicle noise, vibration, and harshness," Science Progress, 104, 00368504211005224 (2021).
- J. Hooper and J. Marco, "Understanding vibration frequencies experienced by electric vehicle batteries," Proc. IET HEVC, 1-6 (2013).
- H. Su, "Vibration test specification for automotive products based on measured vehicle load data," SAE Transactions, 571-581 (2006).
- Y. Gao, F. Qiao, J. You, C. Shen, H. Zhao, J. Gu, Z. Ren, K. Xie, and B. Wei, "Regulating electrodeposition behavior through enhanced mass transfer for stable lithium metal anodes," JCC, 55, 580-587 (2021).
- J. Zhang, Z. Zhou, Y. Wang, Q. Chen, G. Hou, and Y. Tang, "Ultrasonic-assisted enhancement of lithiumoxygen battery," Nano Energy, 102, 107655 (2022).
- R. Hilton, D. Dornbusch, K. Branson, A. Tekeei, and G. Suppes, "Ultrasonic enhancement of battery diffusion," Ultrasonics sonochemistry, 21, 901-907 (2014). https://doi.org/10.1016/j.ultsonch.2013.10.012
- H. Yamaura, M. Ishihama, and K. Togai, "Design and evaluation of output profile shaping of an internal combustion engine for noise & vibration improvement," SAE Int. J. Engines, 7, 1514-1522 (2014). https://doi.org/10.4271/2014-01-1683
- L. Wang, Y.-L. Lee, R. Burger, and K. Li, "Multiple sinusoidal vibration test development for engine mounted components," JFAP, 13, 227-240 (2013). https://doi.org/10.1007/s11668-013-9661-x
- K. Ohta, K. Amano, A. Hayashida, G. Zheng, and I. Honda, "Analysis of piston slap induced noise and vibration of internal combustion engine (effect of piston profile and pin offset)," J. Environ. Eng. 6, 712-722 (2011). https://doi.org/10.1299/jee.6.712
- C. Braccesi, F. Cianetti, L. Goracci, and M. Palmieri, "Sine-Sweep qualification test for engine components: The choice of simulation technique," Proc. AIAS International Conference on Stress Analysis, 360-369 (2019).
- A. Yoshino, "The birth of the lithium-ion battery," Angewandte Chemie International Edition, 51, 5798-5800 (2012). https://doi.org/10.1002/anie.201105006
- J. F. Lang and G. Kjell, "Comparing vibration measurements in an electric vehicle with standard vibration requirements for Li-ion batteries using power spectral density analysis," IJEHV, 7, 272-286 (2015). https://doi.org/10.1504/IJEHV.2015.071640
- J. M. Hooper and J. Marco, "Characterising the invehicle vibration inputs to the high voltage battery of an electric vehicle," J. Power Sources, 245, 510-519 (2014). https://doi.org/10.1016/j.jpowsour.2013.06.150
- G. Hunt, "Electric vehicle battery test procedures manual (Rev. 2)", US Department of Energy, Tech. Rep., 1996.
- UN-ECE Regulation No. 100, Uniform Provisions concerning the Approval of Vehicles with regard to Specific Requirements for the Electric Power Train, 1995.
- P. Berg, M. Spielbauer, M. Tillinger, M. Merkel, M. Schoenfuss, O. Bohlen, and A. Jossen, "Durability of lithium-ion 18650 cells under random vibration load with respect to the inner cell design," Journal of Energy Storage, 31, 101499
- L. Somerville, J. M. Hooper, J. Marco, A. McGordon, C. Lyness, M. Walker, and P. Jennings, "Impact of vibration on the surface film of lithium-ion cells," Energies, 10, 741 (2017).
- J. M. Hooper, J. Marco, G. H. Chouchelamane, and C. Lyness, "Vibration durability testing of nickel manganese cobalt oxide (NMC) lithium-ion 18650 battery cells," Energies, 9, 52 (2016).
- O. A. Bangal, V. Chaturvedi, P. A. Babu, and M. V. Shelke, "Impedance analysis and equivalent circuit modelling of cells subjected to sinusoidal vibration test using electrochemical impedance spectroscopy," Proc. IEEE ITEC, 1-6, (2019).
- D. Aurbach, "Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries," J. Power Sources, 89, 206-218 (2000). https://doi.org/10.1016/S0378-7753(00)00431-6
- Y. Xia, T. Wierzbicki, E. Sahraei, and X. Zhang, "Damage of cells and battery packs due to ground impact," J. Power Sources, 267, 78-97 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.078
- T. Kisters, E. Sahraei, and T. Wierzbicki, "Dynamic impact tests on lithium-ion cells," Int. J. Impact Eng. 108, 205-216 (2017). https://doi.org/10.1016/j.ijimpeng.2017.04.025
- G. Kermani and E. Sahraei, "Dynamic impact response of lithium-ion batteries, constitutive properties and failure model," RSC Adv, 9, 2464-2473 (2019). https://doi.org/10.1039/C8RA08898E
- A. D. Muresanu and M. C. Dudescu, "Numerical and experimental evaluation of a battery cell under impact load," Batteries, 8, 48 (2022).
- S. Tobishima, J. Yamaki, and T. Hirai, "Safety and capacity retention of lithium ion cells after long periods of storage," J. Appl. Electrochem. 30, 405-410 (2000). https://doi.org/10.1023/A:1003992027121
- S. Kim, Y. S. Lee, H. S. Lee, and H. L. Jin, "A study on the behavior of a cylindrical type Li-Ion secondary battery under abnormal conditions," Materialwissenschaft und Werkstofftechnik, 41, 378-385 (2010). https://doi.org/10.1002/mawe.201000612
- I. V. Avdeev and M. Gilaki, "Explicit dynamic simulation of impact in cylindrical lithium-ion batteries," ASME IMECE, 461-467 (2012).
- I. Avdeev and M. Gilaki, "Structural analysis and experimental characterization of cylindrical lithiumion battery cells subject to lateral impact," J. Power Sources, 271, 382-391 (2014).
- M. Gilaki and I. Avdeev, "Impact modeling of cylindrical lithium-ion battery cells: a heterogeneous approach," J. Power Sources, 328, 443-451 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.034
- J. Xu, B. Liu, X. Wang, and D. Hu, "Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies," Applied Energy, 172, 180-189 (2016). https://doi.org/10.1016/j.apenergy.2016.03.108
- T. M. Bandhauer, S. Garimella, and T. F. Fuller, "A critical review of thermal issues in lithium-ion batteries," J. Electrochem. Soc. 158, R1-R25 (2011). https://doi.org/10.1149/1.3515880
- E. Sahraei, J. Meier, and T. Wierzbicki, "Characterizing and modeling mechanical properties and onset of short circuit for three types of lithium-ion pouch cells," J. Power Sources, 247, 503-516 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.056
- S.-i. Tobishima and J.-i. Yamaki, "A consideration of lithium cell safety," J. Power Sources, 81, 882-886 (1999). https://doi.org/10.1016/S0378-7753(98)00240-7
- K. Ozawa, "Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system," SSI. 69, 212-221 (1994).
- H. Maleki and J. N. Howard, "Internal short circuit in Li-ion cells," J. Power Sources, 191, 568-574 (2009). https://doi.org/10.1016/j.jpowsour.2009.02.070
- C.-S. Kim, J.-S. Yoo, K.-M. Jeong, K. Kim, and C.-W. Yi, "Investigation on internal short circuits of lithium polymer batteries with a ceramic-coated separator during nail penetration," J. Power Sources, 289, 41-49 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.010
- D. P. Finegan, B. Tjaden, T. M. M. Heenan, R. Jervis, M. D. Michiel, A. Rack, G. Hinds, D. J. L. Brett, and P. R. Shearing, "Tracking internal temperature and structural dynamics during nail penetration of lithiumion cells," JES. 164, A3285-A3291 (2017).
- A. B. K. Parasumanna, U. S. Karle, and M. R. Saraf, "Material characterization and analysis on the effect of vibration and nail penetration on lithium ion battery," WEVJ. 10, 69 (2019).
- Z. Huang, H. Li, W. Mei, C. Zhao, J. Sun, and Q. Wang, "Thermal runaway behavior of lithium iron phosphate battery during penetration," Fire Technology, 56, 2405-2426
- A. Perea, A. Paolella, J. Dube, D. Champagne, A. Mauger, and K. Zaghib, "State of charge influence on thermal reactions and abuse tests in commercial lithium-ion cells," J. Power Sources, 399, 392-397 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.112
- B. Liu, Y. Jia, C. Yuan, L. Wang, X. Gao, S. Yin, and J. Xu, "Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: A review," Energy Storage Materials, 24, 85-112 https://doi.org/10.1016/j.ensm.2019.06.036
- W. Zhao, G. Luo, and C.-Y. Wang, "Modeling nail penetration process in large-format li-ion cells," JES. 162, A207-A217 (2014).
- Y. Chen, S. Santhanagopalan, V. Babu, and Y. Ding, "Dynamic mechanical behavior of lithium-ion pouch cells subjected to high-velocity impact," Composite Structures, 218, 50-59 (2019).
- T. G. Zavalis, M. Behm, and G. Lindbergh, "Investigation of short-circuit scenarios in a lithium-ion battery cell," J. Electrochem. Soc. 159, A848-A859 (2012). https://doi.org/10.1149/2.096206jes
- K.-C. Chiu, C.-H. Lin, S.-F. Yeh, Y.-H. Lin, and K.-C. Chen, "An electrochemical modeling of lithium-ion battery nail penetration," J. Power Sources, 251, 254-263 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.069
- P. Vyroubal and T. Kazda, "Finite element model of nail penetration into lithium ion battery," J. Energy Storage. 20, 451-458 (2018).
- T. Yamanaka, Y. Takagishi, Y. Tozuka, and T. Yamaue, "Modeling lithium ion battery nail penetration tests and quantitative evaluation of the degree of combustion risk,"J. Power Sources, 416, 132-140 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.055
- J. Wang, W. Mei, Z. Cui, W. Shen, Q. Duan, Y. Jin, J. Nie, Y. Tian, Q. Wang, and J. Sun, "Experimental and numerical study on penetration-induced internal shortcircuit of lithium-ion cell," Appl. Therm. Eng. 171, 115082
- M. Akino, T. Mihara, and K. Yamanaka, "Fatigue crack closure analysis using nonlinear ultrasound," AIP Conf. Proc. 700, 1256-1263 (2004).
- S. K. Ramamoorthy, Y. Kane, and J. A. Turner, "Ultrasound diffusion for crack depth determination in concrete," J. Acoust. Soc. Am. 115, 523-529 (2004). https://doi.org/10.1121/1.1642625
- X. Guo and V. Vavilov, "Crack detection in aluminum parts by using ultrasound-excited infrared thermography," Infrared Physics & Technology, 61, 149-156 (2013). https://doi.org/10.1016/j.infrared.2013.08.003
- A. Farmer, A. Collings, and G. Jameson, "Effect of ultrasound on surface cleaning of silica particles," Int. J. Miner. Process. 60, 101-113 (2000). https://doi.org/10.1016/S0301-7516(00)00009-0
- G. J. Kavarnos, R. S. Janus, and H. C. Robinson, Application of Sonochemistry, NUWC-NPT Tech. Rep., 1994.
- S. Wang, J. Kang, X. Zhang, and Z. Guo, "Dendrites fragmentation induced by oscillating cavitation bubbles in ultrasound field," Ultrasonics, 83, 26-32 (2018). https://doi.org/10.1016/j.ultras.2017.08.004
- K. Chatakondu, M. L. Green, M. E. Thompson, and K. S. Suslick, "The enhancement of intercalation reactions by ultrasound," J. Chem. Soc., Chem. Commun. 12, 900-901 (1987).
- M. E. Hyde and R. G. Compton, "How ultrasound influences the electrodeposition of metals," J. Electroanal. Chem. 531, 19-24 (2002). https://doi.org/10.1016/S0022-0728(02)01016-1
- S. Wang, Z. Guo, X. Zhang, A. Zhang, and J. Kang, "On the mechanism of dendritic fragmentation by ultrasound induced cavitation," Ultrason Sonochem. 51, 160-165 (2019). https://doi.org/10.1016/j.ultsonch.2018.10.031
- X. Zhou, R. Fu, D. Fu, and Y. Wang, "Ultrasound frequency-dependent microstructures of electrodeposited Ni nanocrystals for modifying mechanical properties," J. Mater. Sci. 55, 14980-15004
- Z.-L. Cheng, Y.-C. Kong, L. Fan, and Z. Liu, Ultrasound-assisted Li+/Na+ co-intercalated exfoliation of graphite into few-layer graphene," Ultrason Sonochem. 66, 105108
- Y. Domi, H. Usui, K. Sugimoto, and H. Sakaguchi, "Effect of silicon crystallite size on its electrochemical performance for lithium-ion batteries," Energy Technol. 7, 1800946 (2019).
- L. Yuwen, H. Yu, X. Yang, J. Zhou, Q. Zhang, Y. Zhang, Z. Luo, S. Su, and L. Wang, "Rapid preparation of single-layer transition metal dichalcogenide nanosheets via ultrasonication enhanced lithium intercalation," Chem. Commun. 52, 529-532 (2016). https://doi.org/10.1039/c5cc07301d
- F. Ding, C. Zhang, and X. Hu, "Effects of ultrasound on lithium metal rechargeable battery characteristics at high charging rate," Electrochem. commun. 7, 552-556 (2005). https://doi.org/10.1016/j.elecom.2005.03.012
- A. Huang, H. Liu, O. Manor, P. Liu, and J. Friend, "Enabling rapid charging lithium metal batteries via surface acoustic wave-driven electrolyte flow," Adv. Mater. Lett. 32, 1907516 (2020).