• Title/Summary/Keyword: 전극 형상

Search Result 327, Processing Time 0.032 seconds

The Investigation of Alluvium by Using Electrical Resistivity, Seismic Survey and GPR (전기비저항, 탄성파 그리고 GPR 탐사를 활용한 충적층 탐사)

  • Park, Chung-Hwa;Won, Kyung-Sik;Byun, Ji-Hwan;Min, Dae-Hong;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.17-29
    • /
    • 2013
  • The geophysical methods have an advantage for investigating the wide area with low cost, and thus the application of these methods has been increased. The objective of this paper estimates the characteristics of alluvium through the geophysical methods including elastic wave, electrical resistivity and ground penetration radar. And the standard penetration test is also carried out for verifying the geophysical data with comparison. The sources of elastic wave method are divided into hammer and sissy and the electrical resistivity method is applied with different sizes, shapes and arrays of electrode for deciding the effective way. The center frequency is determined to be 270 MHz for considering the characteristics of soil. The results of ground penetration radar are also compared with those of standard penetration test. The high resolution shows when the source is a sissy in elastic wave method, however, the water level is not identified. In the electrical resistivity method, the non-polarizable electrode and schlumberger array show highly reliable data and the resolution of ground penetration radar is low. Thus, the results of this study are widely applied for determining the appropriate method when investigating the characteristics of alluvium.

Recent Progress and Perspectives of Solid Electrolytes for Lithium Rechargeable Batteries (리튬이차전지용 고체 전해질의 최근 진전과 전망)

  • Kim, Jumi;Oh, Jimin;Kim, Ju Young;Lee, Young-Gi;Kim, Kwang Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.87-103
    • /
    • 2019
  • Nonaqueous organic electrolyte solution in commercially available lithium-ion batteries, due to its flammability, corrosiveness, high volatility, and thermal instability, is demanding to be substituted by safer solid electrolyte with higher cycle stability, which will be utilized effectively in large-scale power sources such as electric vehicles and energy storage system. Of various types of solid electrolytes, composite solid electrolytes with polymer matrix and active inorganic fillers are now most promising in achieving higher ionic conductivity and excellent interface contact. In this review, some kinds and brief history of solid electrolyte are at first introduced and consequent explanations of polymer solid electrolytes and inorganic solid electrolytes (including active and inactive fillers) are comprehensively carried out. Composite solid electrolytes including these polymer and inorganic materials are also described with their electrochemical properties in terms of filler shapes, such as particle (0D), fiber (1D), plane (2D), and solid body (3D). In particular, in all-solid-state lithium batteries using lithium metal anode, the interface characteristics are discussed in terms of cathode-electrolyte interface, anode-electrolyte interface, and interparticle interface. Finally, current requisites and future perspectives for the composite solid electrolytes are suggested by help of some decent reviews recently reported.

Analysis of Heat-generating Performance, Flexural Strength and Microstructure of Conductive Mortar Mixed with Micro Steel Fiber and MWCNT (마이크로 강섬유와 MWCNT를 혼입한 전도성 모르타르의 발열성능, 휨강도 및 미세구조 분석 )

  • Beom-gyun Choi;Gwang-hee Heo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.47-58
    • /
    • 2024
  • This study were conduced experimentally to analyze the heat-generating performance, flexural strength, and microstructure of conductive mortar mixed with micro steel fiber and multi-wall carbon nanotube (MWCNT). In the conductive mortar heat-generating performance and flexural strength tests, the mixing concentration of MWCNT was selected as 0.0wt%, 0.5wt%, and 1.0wt% relative to the weight of cement, and micro steel fibers were mixed at 2.0vol% relative to the volume. The performance experiments were conducted with various applied voltages (DC 10V, 30V, 60V) and different electrode spacings (40 mm, 120 mm) as parameters, and the flexural strength was measured at the curing age of 28 days and compared and analyzed with the normal mortar. Furthermore, the surface shape and microstructure of conductive mortar were analyzed using a field emission scanning electron microscope (FE-SEM). The results showed that the heat-generating performance improved as the mixing concentration of MWCNT and the applied voltage increased, and it further improved as the electrode spacing became narrower. However, even if the mixing concentration of MWCNT was added up to 1.0 wt%, the heat-generating performance was not significantly improved. As a result of the flexural strength test, the average flexural strength of all specimens except the PM specimen and the MWCNT mixed specimens was 4.5 MPa or more, showing high flexural strength due to the incorporation of micro steel fibers. Through FE-SEM image analysis, Through FE-SEM image analysis, it was confirmed that a conductive network was formed between micro steel fibers and MWCNT particles in the cement matrix.

The Influence of Oxygen Gas Flow Rate on Growth of Tin Dioxide Nanostructures (이산화주석 나노구조물의 성장에서 산소가스 유량이 미치는 영향)

  • Kim, Jong-Il;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.1-7
    • /
    • 2018
  • Tin dioxide, $SnO_2$, is applied as an anode material in Li-ion batteries and a gas sensing materials, which shows changes in resistance in the presence of gas molecules, such as $H_2$, NO, $NO_2$ etc. Considerable research has been done on the synthesis of $SnO_2$ nanostructures. Nanomaterials exhibit a high surface to volume ratio, which means it has an advantage in sensing gas molecules and improving the specific capacity of Li-ion batteries. In this study, $SnO_2$ nanostructures were grown on a Si substrate using a thermal CVD process with the vapor transport method. The carrier gas was mixed with high purity Ar gas and oxygen gas. The crystalline phase of the as-grown tin oxide nanostructures was affected by the oxygen gas flow rate. The crystallographic property of the as-grown tin oxide nanostructures were investigated by Raman spectroscopy and XRD. The morphology of the as-grown tin oxide nanostructures was confirmed by scanning electron microscopy. As a result, the $SnO_2$ nanostructures were grown directly on Si wafers with moderate thickness and a nanodot surface morphology for a carrier gas mixture ratio of Ar gas 1000 SCCM : $O_2$ gas 10 SCCM.

A Study on Oxygen Evolution Activity of Co3O4 with different morphology prepared by Ultrasonic Spray Pyrolysis for Water Electrolysis (분무열분해로 합성한 수전해용 Co3O4의 입자형태에 따른 산소발생 활성에 관한 연구)

  • Kim, Ingyeom;Nah, In Wook;Park, Sehkyu
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.854-862
    • /
    • 2016
  • As the demand for a clean energy to replace fossil fuel being depleted increases, hydrogen energy is considered as a promising candidate for future energy source. Water electrolysis which produces hydrogen has high energy efficiency and stability but still has a large overpotential for oxygen evolution reaction (OER). In this study, $Co_3O_4$ catalysts with different morphology were prepared by spray pyrolysis from solutions which contain Co precursor and various organic additives (urea, sucrose, and citric acid), followed by post heat treatment. For the catalysts synthesized, X-ray diffraction (XRD) measurements were performed to identify their crystal structure. Morphology and surface shape of the catalysts were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Surface area and pore volume were examined by nitrogen adsortpion & desorption tests and X-ray photoelectron spectroscopy (XPS) was conducted to confirm nitrogen doping. Linear sweep voltammetry (LSV) was carried out to investigate OER activity of $Co_3O_4$ catalysts. As a result, bare-$Co_3O_4$ which has high surface area and small particle size determined by spray pyrolysis showed high activity toward OER.

Enhancement of Crystallinity in ZnO:Al Films Using a Two-Step Process Involving the Control of the Oxygen Pressure (산소 압력의 조절과 함께 두 번의 증착 과정을 이용한 ZnO:Al 박막에 결정성의 향상)

  • Moon, Tae-Ho;Yoon, Won-Ki;Lee, Seung-Yoon;Ji, Kwang-Sun;Eo, Young-Joo;Ahn, Seh-Won;Lee, Heon-Min
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.128-133
    • /
    • 2010
  • ZnO:Al films were deposited by DC-pulsed magnetron sputtering using a two-step process involving the control of the oxygen pressure. The seed layers were prepared with various Ar to oxygen flow ratios and the bulk layers were deposited under pure Ar. As the oxygen pressure during the deposition of the seed layer increased, the crystallinity and degree of (002) texturing increased. The resistivity gradually decreased with increasing crystallinity from $4.7\times10^4\Omega{\cdot}cm$ (no seed) to $3.7\times10^4\Omega{\cdot}cm$ (Ar/$O_2$ = 9/1). The etched surface showed a crater-like structure and an abrupt morphology change appeared as the crystallinity was increased. The sample deposited at an Ar/$O_2$ flow ratio of 9/1 showed a very high haze value of 88% at 500 nm, which was explained by the large feature size of the craters, as shown in the AFM image.

Triboelectrostatic Recovery of High Zinc-Containing Particulate contents from Steel-Making Process Dust (전기로 제강분진 중 고아연함량입자 성분의 마찰대전분리 회수)

  • Chang Hyun-Joo;Kim Dong-Su;Kim Hang-Goo;Cho Min-Yaung;Namkung Won
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.39-46
    • /
    • 2004
  • The amount of electric furnace dust has been steadily increasing due to the increase of iron scraps which are usually recycled by electric furnace melting process. To date, this electric furnace dust has usually been treated by landfilling, however, because of shortage of landfill sites and heavy metal leaching more desirable treatment schemes are urgently needed. Among several possible schemes for the proper treatment of electric furnace dust, its recycling can be said to be most desirable. In present study, the triboelectrostatic separation of zinc and zinc-containing components from electric furnace dust was attempted based on its physicochemical properties such as particle shape, size distribution, and chemical assay. The dust was found to be mixed with spherical and non-spherical shaped particles and its major component materials were $ZnFe_2$$O_4$, ZnO, Fe, Zn, and FeO. The content of zinc-containing components in the entire dust was observed to be in the range of 15~30 wt%, which reasonably justified that zinc is recyclable. The triboelectrostatic characteristic of each component material was found to be different each other since their work functions were different, and based on this characteristic zinc and zinc-containing component could be flirty separated from the dust. After selecting a proper tribo-elec-trification material, the separation features of zinc and zinc-containing component were examined by taking the distance of electrodes, electric field strength, and scavenging as the experimental variables. The highest zinc-content obtained under the optimal separating condition was found to be up to 50wt%.

Structural and Optical Properties of Sol-gel Derived ZnO:Cu Films

  • Bae, Ji-Hwan;Park, Jun-Su;Jo, Sin-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.199-199
    • /
    • 2013
  • 최근 단파장 광전 소자와 고출력 고주파 전자 소자에 대한 수요 때문에 넓은 밴드갭 에너지를 갖는 반도체에 관심이 많다. 이중에서, ZnO는 우수한 화학 및 역학적 안정성, 수소 플라즈마 내구성과 저가 제조의 장점 때문에 광전자 소자 개발 분야에 적합한 산화물 투명 전극으로 관심을 끌고 있다. 불순물이 도핑되지 않은 ZnO는 본질적으로 산소 빈자리 (vacancy)와 아연 격자틈새 (interstitial)와 같은 자체의 결함으로 말미암아 n형의 극성을 갖기 때문에, 반도체 소자로 응용하기 위해서는 도핑 운반자의 농도와 전도성을 제어하는 것이 필요하다. 본 연구에서는 박막 제조시 제어성, 안정성과 용이하게 성장이 가능한 졸겔 (sol-gel) 방법을 사용하여 사파이어와 석영 기판 위에 Cu가 도핑된 ZnO 박막을 성장시켰으며, 그것의 구조, 표면 형상, 평균 투과율, 광학 밴드갭 에너지를 계산하였다. 특히, Cu의 몰 비를 0, 0.01, 0.03, 0.05, 0.07, 0.1 mol로 변화시키면서 ZnO:Cu 박막을 성장시켰다. ZnO:Cu 졸은 zinc acetate dihydrate, 2-methoxyethanol (용매), momoethanolamine (MEA, 안정제)을 사용하여 제조하였다. 상온에서 2-methoxyethanol과 MEA가 혼합된 용액에 zinc acetate dihydrate (Zn)을 용해시켰다. 이때 MEA와 Zn의 몰 비는 1로 유지하였다. 이 용액을 $60^{\circ}C$ 가열판 (hot plate)에서 24 h 동안 자석으로 휘젓으며 혼합하여 맑고 균일한 용액을 얻었다. 이 용액을 3000 rpm 속도로 회전하는 스핀 코터기의 상부에 장착된 사파이어와 석영 기판 위에 주사기 (syringe)를 사용하여 한 방울 떨어뜨려 30 s 동안 스핀한 다음에, 용매를 증발시키고 유기물 찌꺼기를 제거하기 위하여 $300^{\circ}C$에서 10분 동안 건조시킨다. 기판 위에 코팅하는 작업에서 부터 건조 작업까지를 10회 반복한 다음에, 1 h 동안 전기로에 장입하여 석영 기판 위에 증착된 시료는 $550^{\circ}C$에서, 사파이어 기판은 $700^{\circ}C$에서 열처리를 수행하였다. Cu의 몰 비 0, 0.01, 0.03, 0.05, 0.07, 1로 성장된 ZnO:Cu 박막에 대한 x선 회절 분석의 결과에 의하면, 모든 ZnO:Cu 박막의 경우에 관측된 34.3o의 피크는 ZnO (002) 면에서 발생된 회절 패턴을 나타낸다. 이것은 JCPDS #80-0075에 제시된 회절상과 일치하였으며, ZnO:Cu 박막이 기판에 수직인 c-축을 따라 우선 배향됨을 나타낸다. 사파이어 기판 위에 증착된 박막의 경우에, Cu의 몰 비가 점점 증가함에 따라(002)면 회절 피크의 세기는 전반적으로 증가하여 0.07 mol에서 최대를 나타내었으나, 석영 기판 위에 증착된 박막의 경우에는 0.05 mol에서 최대를 보였다. 외선-가시광 분광계를 사용하여 서로 다른 Cu의 몰 비로 성장된 ZnO:Cu 박막에서 광학 흡수율 (absorbance) 스펙트럼을 측정하였으며, 이 데이터를 사용하여 평균 투과율을 계산한 결과, 투과율은 Cu의 몰 비에 따라 현저한 차이를 나타내었다. Cu의 몰 비가 0.07 mol일 때 평균 투과율은 80%로 가장 높았으며, 0.03 mol에서는 30%로 최소이었다. 광학밴드갭 에너지는 Tauc 모델을 사용하여 계산하였고, 결정 입자의 형상과 크기와의 상관 관계를 조사하였다.

  • PDF

Development of CNT Coating Process using Argon Atmospheric Plasma (아르곤 상압플라즈마를 이용한 CNT 코팅 공정 기술 개발)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin
    • Journal of Industrial Convergence
    • /
    • v.20 no.10
    • /
    • pp.33-38
    • /
    • 2022
  • In this paper, a simple method of forming a solution-based carbon nanotube (CNT) for use as a conductive material for electronic devices was studied. The CNT thin film coating was performed on the glass by applying the spin coating method and the argon atmospheric pressure plasma process. In order to observe changes in electrical and physical properties according to the number of coatings, samples formed in the same manner from times 1 to 5 were prepared, and surface shape, reflectance, transmittance, absorbance, and sheet resistance were measured for each sample. As the number of coatings increased, the transmittance decreased, and the reflectance and absorptivity increased in the entire measurement wavelength range. Also, as the wavelength decreases, the transmittance decreases, and the reflectance and absorption increase. In the case of electrical properties, it was confirmed that the conductivity was significantly improved when the second coating was applied. In conclusion, in order to replace CNT with a transparent electrode, it is necessary to consider the number of coatings in consideration of reflectivity and electrical conductivity together, and it can be seen that 2 times is optimal.

A Review on the Deposition/Dissolution of Lithium Metal Anodes through Analyzing Overpotential Behaviors (과전압 거동 분석을 통한 리튬 금속 음극의 전착/탈리 현상 이해)

  • Han, Jiwon;Jin, Dahee;Kim, Suhwan;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Lithium metal is the most promising anode for next-generation lithium-ion batteries due to its lowest reduction potential (-3.04 V vs. SHE) and high specific capacity (3860 mAh/g). However, the dendritic formation under high charging current density remains one of main technical barriers to be used for commercial rechargeable batteries. To address these issues, tremendous research to suppress lithium dendrite formation have been conducted through new electrolyte formulation, robust protection layer, shape-controlled lithium metal, separator modification, etc. However, Li/Li symmetric cell test is always a starting or essential step to demonstrate better lithium dendrite formation behavior with lower overpotential and longer cycle life without careful analysis. Thus, this review summarizes overpotential behaviors of Li/Li symmetric cells along with theoretical explanations like initial peaking or later arcing. Also, we categorize various overpotential data depending on research approaches and discuss them based on peaking and arcing behaviors. Thus, this review will be very helpful for researchers in lithium metal to analyze their overpotential behaviors.