• Title/Summary/Keyword: 적산

Search Result 757, Processing Time 0.022 seconds

A Study on Development of Strength Prediction Model for Construction Field by Maturity Method (적산온도 기법을 활용한 건설생산현장에서의 강도예측모델 개발에 관한 연구)

  • Kim, Moo-Han;Nam, Jae-Hyun;Khil, Bae-Su;Choi, Se-Jin;Jang, Jong-Ho;Kang, Yong-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.177-182
    • /
    • 2002
  • The purpose of this study is to develope the strength prediction model by Maturity Method. A maturity function is a mathematical expression to account for the combined effects of time and temperature on the strength development of a cementious mixture. The method of equivalent ages is to use Arrhenius equation which indicates the influence of curing temperature on the initial hydration ratio of cement. For the experimental factors of this study, we selected the concrete mixing of W/C ratio 45, 50, 55 and 60% and curing temperature 5, 10, 20 and $30^{\circ}C$. And we compare and evaluate with logistic model that is existing strength prediction model, because we have to verify adaption possibility of new strength prediction model which is proposed by maturity method. As the results, it is found that investigation of the activation energy that are used to calculate equivalent age is necessary, and new strength prediction model was proved to be more accurate in the strength prediction than logistic model in the early age. Moreover, the use of new model was more reasonable because it has low SSE and high decisive factor.

A Study on the Design Standard of Museum Display Lighting in Consideration of the Damage by Optical Rediant Energy from Light Sources (광방사 에너지에 의한 손상을 고려한 박물관 전시조명 설계기준 설정에 관한 연구)

  • 김홍범;권세혁
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.1
    • /
    • pp.29-36
    • /
    • 1994
  • Exhibitlon lighting design be done after due consideration of the photochemical reaction and heating effcts upon exposure to light In this study the balanced judgement is as follows. 'The most light-susceptible material should be illustrated less than 5O(lx](illumlnance-hours per year: 120,OOOlx.h)and the illuminance of moderately sensitive material is 200(lx] (illuminance hours per year: 480,OOOlx.h). Moreover to minimize damage the sources of light should not only contribute as little as heat possible but remove ultraviolt radiation by filters. Also the sources of light must have good color rendering and low color temperature.

  • PDF

Role of Quantity Surveyor and Activities of reeled Associations in Historical Construction Costs Estimation System of Foreign Countries (외국의 실적공사비 제도에서 적산사의 역할과 적산사 협회의 활동현황)

  • Sohn, H.K.;Lee, H.K.;Park, I.P.;Park, M.Y.;Kwon, Y.M.;Seo, S.S.;Kim, K.G.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.05b
    • /
    • pp.176-179
    • /
    • 2004
  • When we have been estimated construction costs, till now, we are used to costs accumulating method of each items based on standard labors rates. But there are some problems of its methods. Our governments are applied to a historical construction costs estimation system fur building construction and civil engineering works from January 2004. The electrical construction works are forecasted that applied to historical construction cost estimation systems. This paper is summarized to roles and systems of quantity surveyor. And we investigated to activities and organizations of its associations.

  • PDF

State of Health estimation based on Secondary Li-ion battery Electrochemical Modeling and Electrical experiment (리튬 이차 전지의 전기화학 모델링과 전기적 실험 기반 상태 추정)

  • Kim, Su-An;Park, Seong-Yun;Kim, Jong-hoon
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1098-1103
    • /
    • 2020
  • This paper deals with a method for estimating the battery state-of-health(SOH) through electrical experiments and electrochemical modeling of lithium-ion secondary battery. In order to confirm the actual battery SOH through the battery electrical aging experiment, the current integration method was used. The SOH is estimated using the internal resistance value derived from the electrical experiment. Also, in electrochemical modeling, the SOH is estimated through the change of the SEI layer with the increase of the number of cycles. The new SOH is derived by applying weighting factor to the three methods of estimating SOH, including the actual battery SOH.

A Simple Method Using a Topography Correction Coefficient for Estimating Daily Distribution of Solar Irradiance in Complex Terrain (지형보정계수를 이용한 복잡지형의 일 적산일사량 분포 추정)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • Accurate solar radiation data are critical to evaluate major physiological responses of plants. For most upland crops and orchard plants growing in complex terrain, however, it is not easy for farmers or agronomists to access solar irradiance data. Here we suggest a simple method using a sun-slope geometry based topographical coefficient to estimate daily solar irradiance on any sloping surfaces from global solar radiation measured at a nearby weather station. An hourly solar irradiance ratio ($W_i$) between sloping and horizontal surface is defined as multiplication of the relative solar intensity($k_i$) and the slope irradiance ratio($r_i$) at an hourly interval. The $k_i$ is the ratio of hourly solar radiation to the 24 hour cumulative radiation on a horizontal surface under clear sky conditions. The $r_i$ is the ratio of clear sky radiation on a given slope to that on a horizontal reference. Daily coefficient for slope correction is simply the sum of $W_i$ on each date. We calculated daily solar irradiance at 8 side slope locations circumventing a cone-shaped parasitic volcano(c.a., 570m diameter for the bottom circle and 90m bottom-to-top height) by multiplying these coefficients to the global solar radiation measured horizontally. Comparison with the measured slope irradiance from April 2007 to March 2008 resulted in the root mean square error(RMSE) of $1.61MJ\;m^{-2}$ for the whole period but the RMSE for April to October(i.e., major cropping season in Korea) was much lower and satisfied the 5% error tolerance for radiation measurement. The RMSE was smallest in October regardless of slope aspect, and the aspect dependent variation of RMSE was greatest in November. Annual variation in RMSE was greatest on north and south facing slopes, followed by southwest, southeast, and northwest slopes in decreasing order. Once the coefficients are prepared, global solar radiation data from nearby stations can be easily converted to the solar irradiance map at landscape scales with the operational reliability in cropping season.

Temperature-dependent Development of Pseudococcus comstocki(Homoptera: Pseudococcidae) and Its Stage Transition Models (가루깍지벌레(Pseudococcus comstocki Kuwana)의 온도별 발육기간 및 발육단계 전이 모형)

  • 전흥용;김동순;조명래;장영덕;임명순
    • Korean journal of applied entomology
    • /
    • v.42 no.1
    • /
    • pp.43-51
    • /
    • 2003
  • This study was carried out to develop the forecasting model of Pseudococcus comtocki Kuwana for timing spray. Field phonology and temperature-dependent development of p. comstocki were studied, and its stage transition models were developed. p comstocki occurred three generations a year in Suwon. The 1 st adults occurred during mid to late June, and the 2nd adults were abundant during mid to late August. The 3rd adults were observed after late October. The development times of each instar of p. comstocki decreased with increasing temperature up to 25$^{\circ}C$, and thereafter the development times increased. The estimated low-threshold temperatures were 14.5, 8.4, 10.2, 11.8, and 10.1$^{\circ}C$ for eggs, 1st+2nd nymphs, 3rd nymphs, preoviposition, and 1st nymphs to preoviposition, respectively. The degree-days (thermal constants) for completion of each instar development were 105 DD for egg,315 DD for 1st+2nd nymph, 143 DD for 3rd nymph, 143 DD for preoviposition, and 599 DD for 1 st nymph to preoviposition. The stage transition models of p. comstocki, which simulate the proportion of individuals shifted from a stage to the next stage, were constructed using the modified Sharpe and DeMichele model and the Weibull function. In field validation, degree-day models using mean-minus-base, sine wave, and rectangle method showed 2-3d, 1-7d, and 0-6 d deviation with actual data in predicting the peak oviposition time of the 1st and 2nd generation adults, respectively. The rate summation model, in which daily development rates estimated by biophysical model of Sharpe and DeMichele were accumulated, showed 1-2 d deviation with actual data at the same phonology predictions.

Control of Daily Integral PPE by the Artificial Lighting and shading screen In Greenhouse (인공광 및 차광스크린을 이용한 온실의 일일적산 광합성유효광량자속 조절)

  • 이현우
    • Journal of Bio-Environment Control
    • /
    • v.12 no.1
    • /
    • pp.45-53
    • /
    • 2003
  • The object of this study was to develop the control technology of daily integral photosynthetic photon flux (PPF) by the artificial lighting and shading screen in greenhouse. The shading time needed to get the target PPF by using two types of shading screens having shading ratio of 55% and 85% was analyzed. The results showed the shading ratio of screen to be installed in greenhouse should be different depending on the amount of target PPF to be controlled. The PPF control experiment by using the 55% shading screen in July and August showed that the maximum difference between measured and calculated value was about 5 mol$.$ $m^{-2}$ $.$ $d^{-1}$ in no shading condition. This difference is satisfactory result because the daily integral PPF is quite different depending on the weather condition. The simulation result about PPF distribution pattern shortened the time needed to find the proper arrangement of artificial lightings in greenhouse. But the further study was required to find the supplemental lighting arrangement to be able to provide the exactly uniform distribution of target light intensity. The supplemental irradiation time needed to acquire the target daily integral PPF for different supplemental light intensities, weather conditions, and months was analyzed. The result showed that the supplemental light intensity should be decided depending on the amount of target PPF to be controlled. The result of PPF control experiment conducted by using 55% shading screen and 300 $\mu$mol$.$ $m^{-2}$ $.$ $s^{-1}$ supplemental light intensity from the end of May to the beginning of June showed that the maximum difference between target and measured value was about 3 mol$.$ $d^{-1}$ $.$ $m^{-2}$ . If we consider that the difference of the daily integral PPF depending on weather condition was the maximum 30 mol$.$ $m^{-2}$ $.$ $d^{-l}$, the control effect was acceptable. Although the result of this study was the PPF control technology to grow lettuce, the data and control method obtained could be employed for other crop production.n.

1-month Prediction on Rice Harvest Date in South Korea Based on Dynamically Downscaled Temperature (역학적 규모축소 기온을 이용한 남한지역 벼 수확일 1개월 예측)

  • Jina Hur;Eun-Soon Im;Subin Ha;Yong-Seok Kim;Eung-Sup Kim;Joonlee Lee;Sera Jo;Kyo-Moon Shim;Min-Gu Kang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.267-275
    • /
    • 2023
  • This study predicted rice harvest date in South Korea using 11-year (2012-2022) hindcasts based on dynamically downscaled 2m air temperature at subseasonal (1-month lead) timescale. To obtain high (5 km) resolution meteorological information over South Korea, global prediction obtained from the NOAA Climate Forecast System (CFSv2) is dynamically downscaled using the Weather Research and Forecasting (WRF) double-nested modeling system. To estimate rice harvest date, the growing degree days (GDD) is used, which accumulated the daily temperature from the seeding date (1 Jan.) to the reference temperature (1400℃ + 55 days) for harvest. In terms of the maximum (minimum) temperatures, the hindcasts tends to have a cold bias of about 1. 2℃ (0. 1℃) for the rice growth period (May to October) compared to the observation. The harvest date derived from hindcasts (DOY 289) well simulates one from observation (DOY 280), despite a margin of 9 days. The study shows the possibility of obtaining the detailed predictive information for rice harvest date over South Korea based on the dynamical downscaling method.

Effects of Temperature Conditions on the Growth and Oviposition of Brown Planthopper, Nilaparvata lugens $St{\aa}l$ (온도조건(溫度條件)이 벼멸구의 발육(發育) 및 산란(産卵)에 미치는 영향(影響)에 관한 연구(硏究))

  • Bae, Soon-Do;Song, Yoo-Han;Park, Yeong-Do
    • Korean journal of applied entomology
    • /
    • v.26 no.1 s.70
    • /
    • pp.13-23
    • /
    • 1987
  • This study was conducted to know the effects of temperature conditions on the growth and oviposition of the brown planthopper(BPH), Nilaparvata lugens $St{\aa}l$. Results obtained were to predict the timing of the BPH control by measuring population dynamics of the BPH in response to temperature fluctuations upon migration of the insects in paddy fields. Developmental and ovipositional rates under constant and alternating temperature conditions were observed in a plant growth cabinet. Hatchabilities of eggs of the BPH were the highest at $25^{\circ}C$ and were decreased below or above the optimum temperature. Egg periods were the shortest at $27.5^{\circ}C$ and prolonged with decreasing temperature, but retarded at higher temperature above $30^{\circ}C$. Adult emergence rates were the highest at $27.5^{\circ}C$ and reduced with decreasing temperature, and no adult emerged at $32.5^{\circ}C$ and $35^{\circ}C$. Developmental period of nymph was the shortest at both $27.5^{\circ}C$ and $30^{\circ}C$, but extended with decreasing temperature. Female longevity was increased with decreasing temperature and the male longevity was the shortest at $27.5^{\circ}C$. Preoviposition period was the shortest at $32.5^{\circ}C$, but prolonged with decreasing temperature. It was about 6.5 times longer at $17.5^{\circ}C$ than that at $32.5^{\circ}C$. Number of eggs oviposited per female was the greatest at $25^{\circ}C$, but decreased at the temperature below or above the optimum. Under the same total effective day-degrees, hatchabilty at the alternating temperature was about 10% higher than that at the constant temperature but egg period at the alternating temperature was nearly identical as that at the constant. Under the $22^{\circ}C$ condition, emergence rate was about 8% higher at the alternating temperature than that at the constant, however, at the $28^{\circ}C$, the rate was about 8% higher at the constant than that at the alternating. Nymphal period was about $4{\sim}6$ days longer at the alternating temperature than that at the constant. Under the same total effective day-degrees in adult stage, both longevity and oviposition period were longer at alternating temperature than those at the constant. Number of eggs oviposited per female was also higher at the alternating. Longevities of females reared under $28^{\circ}C$ of constant temperature was the longest no matter what temperatures they were exposed after the emergence. This result seems to be indicating that female longevity is greatly influenced by the temperature to which they were exposed durings immature stages. Preoviposition period was affected by the temperature exposed during the nympal and adult stage whereas the number of eggs oviposited was affected by the temperature during the adult stage only. Based on the results from this study, the developmental threshold temperatures seem to be $14.12^{\circ}C$ for eggs, $14.76^{\circ}C$ for nymphs, $9.62^{\circ}C$ for adults, and $15.95^{\circ}C$ for preoviposition period. Estimated values of the total effective temperature for completing each stage were 141.25 day-degrees for eggs, 167.83 day-degrees for nymphs, 349.64 day-degrees for adults, and 58.60 day-degrees for preoviposition.

  • PDF

Evaluation of Organic Sediments Qualities for the Urban Streams in the Busan City (부산시 하천퇴적물의 유기 오염도 평가)

  • Lee, Jun-Ki;Kim, Seog-Ku;Song, Jae-Hong;Lee, Tae-Yoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.975-982
    • /
    • 2009
  • The purpose of this study is to offer informations about the current conditions and basic data of stream sediments in Busan city. So we first select 14 urban streams and collect sediment samples. Then, COD, proximate analysis, volatile solid, organic carbon content and elemental analysis were conducted to determine characteristics of the sediments. Results show that COD, volatile solid, Organic carbon content, T-N of sediment are determined in the range of 1.20~75.07 mg/g, 0.19~11.54%, 0.23~34.21% and 0.76~3.46%, respectively. Analysis data of sediments were compared with USEPA sediment quality standards and ontario sediment quality guidelines. As a result, when compared with COD, volatile solid and organic carbon content values, Bosucheon and Gudeokcheon are relatively heavily contaminated than the remainder sampling sites. But when compared with T-N values, all of sites were evaluated as seriously contaminated. Finally, for the determination of the correlations between sediment COD and moisture contents, ash contents, volatile solid, total organic carbon, total nitrogen and total carbon, linear model was fitted to the data using a least-squares algorithm. As a result, Linear model was well fitted to each data with good values of the correlation coefficient (r=0.9664~0.8501).