DOI QR코드

DOI QR Code

1-month Prediction on Rice Harvest Date in South Korea Based on Dynamically Downscaled Temperature

역학적 규모축소 기온을 이용한 남한지역 벼 수확일 1개월 예측

  • Jina Hur (Climate Change Assessment Division, National Institute of Agricultural Sciences) ;
  • Eun-Soon Im (Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology) ;
  • Subin Ha (Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology) ;
  • Yong-Seok Kim (Climate Change Assessment Division, National Institute of Agricultural Sciences) ;
  • Eung-Sup Kim (Climate Change Assessment Division, National Institute of Agricultural Sciences) ;
  • Joonlee Lee (Department of Civil Urban Earth and Environmental Engineering, The Ulsan National Institute of Science and Technology) ;
  • Sera Jo (Climate Change Assessment Division, National Institute of Agricultural Sciences) ;
  • Kyo-Moon Shim (Climate Change Assessment Division, National Institute of Agricultural Sciences) ;
  • Min-Gu Kang (Climate Change Assessment Division, National Institute of Agricultural Sciences)
  • 허지나 (국립농업과학원 기후변화평가과) ;
  • 임은순 (홍콩과학기술대학교) ;
  • 하수빈 (홍콩과학기술대학교) ;
  • 김용석 (국립농업과학원 기후변화평가과) ;
  • 김응섭 (국립농업과학원 기후변화평가과) ;
  • 이준리 (울산과학기술원) ;
  • 조세라 (국립농업과학원 기후변화평가과) ;
  • 심교문 (국립농업과학원 기후변화평가과) ;
  • 강민구 (국립농업과학원 기후변화평가과)
  • Received : 2023.09.18
  • Accepted : 2023.10.31
  • Published : 2023.12.30

Abstract

This study predicted rice harvest date in South Korea using 11-year (2012-2022) hindcasts based on dynamically downscaled 2m air temperature at subseasonal (1-month lead) timescale. To obtain high (5 km) resolution meteorological information over South Korea, global prediction obtained from the NOAA Climate Forecast System (CFSv2) is dynamically downscaled using the Weather Research and Forecasting (WRF) double-nested modeling system. To estimate rice harvest date, the growing degree days (GDD) is used, which accumulated the daily temperature from the seeding date (1 Jan.) to the reference temperature (1400℃ + 55 days) for harvest. In terms of the maximum (minimum) temperatures, the hindcasts tends to have a cold bias of about 1. 2℃ (0. 1℃) for the rice growth period (May to October) compared to the observation. The harvest date derived from hindcasts (DOY 289) well simulates one from observation (DOY 280), despite a margin of 9 days. The study shows the possibility of obtaining the detailed predictive information for rice harvest date over South Korea based on the dynamical downscaling method.

본 연구에서는 농촌진흥청에서 홍콩과학기술대학교와 국제공동연구를 통해 개발중인 1개월 농업기상 예측 시스템을 이용하여 2012-2022년 기간 동안 1개월 과거기후 예측 정보를 생산하고, 유효적산온도 기법을 적용하여 벼 수확일 전망 가능성을 살펴보았다. 상세한 기후정보를 얻기 위해, 지역기후모델(WRF)을 이용하여 전지구 기후예측 정보(CFSv2)를 남한지역에 대해 5 km 해상도로 규모축소하였다. 벼 수확일은 역학적 규모축소된 최고기온과 최저기온 과거예측 자료를 유효적산온도에 적용하여 추정하였다. 모형의 최고기온(최저기온)는 벼 생육기간(5월~10월)에 대해 관측과 비교하여 약 1.2 ℃ (0.1 ℃) 정도 과소모의하였다. 벼 수확일 추정 자료는 정성적으로 관측의 전반적인 공간 패턴을 모의하면서 지형효과에 의한 상세한 지역적 편차를 모의하였다. 그러나 음의 기온 오차가 유효적산온도에 투영되어, 예측자료에서 추정한 벼 수확일이 관측에서 추정한 벼 수확일과 비교하여 정량적으로 약 9일 늦게 모의하였다. 본 연구를 통해 1개월 기상예측 정보와 유효적산온도를 이용하여 남한 전역에 대해 공간적으로 연속적인 상세한(5 km) 벼 수확일 정보를 사전에 얻을 수 있는 가능성을 보았다. 예측정보의 신뢰성을 확보하고, 유효적산온도 뿐만 아니라 농업모형과 연계한다면 다양한 작목에 대한 농업정보들을 사전에 생산할 수 있을 것으로 생각된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 "신농업기후변화대응체계구축사업(과제번호: RS-2020-RD009438)"의 지원으로 수행되었습니다.

References

  1. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface - hydrology model with the Penn State - NCAR MM5 modeling system. Part I: model implementation and sensitivity. Monthly Weather Review 129, 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  2. Ha, S., Y. T. Kim, E. S. Im, J. Hur, S. Jo, Y. S. Kim, K. M. Shim, 2023: Impacts of meteorological variables and machine learning algorithms on rice yield prediction in Korea. International Journal of Biometeorology.
  3. Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice-microphysical processes for the bulk parameterization of cloud and precipitation. Monthly Weather Review 132, 103-120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
  4. Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  5. Hur, J. and J. B. Ahn, 2015: The change of first-flowering date over South Korea projected from downscaled IPCC AR5 simulation: peach and pear. International Journal of Climatology 35, 1926-1937. https://doi.org/10.1002/joc.4098
  6. Hur, J., J. H. Park, K. M. Shim, Y. S. and Kim, S. Jo, 2020: A High-Resolution Agro-Climatic Dataset for Assessment of Climate Change over South Korea. Korean Journal of Agricultural and Forest Meteorology 22(3), 128-134 (in Korean with English abstract).
  7. Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. Journal of Geophysical Research 113, D13103.
  8. Im, E. S., S. Ha, L. Qiu, J. Hur, S. Jo, and K. M. Shim, 2021: An evaluation of temperature-based agricultural indices over Korea from the high-resolution WRF simulation. Frontiers in Earth Science 9, 656787.
  9. Jimenez, P. A., J. Dudhia, J. F. Gonzalez-Rouco, J. Navarro, J. P. Montavez, and E. Garcia-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Monthly Weather Review 140, 898-918. https://doi.org/10.1175/MWR-D-11-00056.1
  10. Jo, S, K. M. Shim, J. Hur, Y. S. Kim, and J. B. Ahn, 2020: Future Changes of Agro-Climate and Heat Extremes over S. Korea at 2 and 3 ℃ Global Warming Levels with CORDEX-EA Phase 2 Projection. Atmosphere 2020 11, 1336.
  11. Kain, J. S., S. J. Weiss, D. R. Bright, M. E. Baldwin, J. J. Levit, G. W. Carbin, C. S. Schwartz, M. L. Weisman, K. K. Droegemeier, D. B. Weber, and K. W. Thomas, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Weather Forecast 23, 931-952. https://doi.org/10.1175/WAF2007106.1
  12. KMA (Korea Meteorological Administration), 2022: Climate characteristics for summer 2022 (June-Agust). 35pp. [available from www. climate.go.kr]
  13. Lee, C. K., B. W. Lee, Y. H. Yoon, and J. C. Shin, 2001: Temperature response and prediction model of leaf appearance rate in rice. Korean Journal of Crop Science 46(3), 202-208 (in Korean with English abstract).
  14. Oh, D., J. H. Ryu, Y. Cho, W. Kim, and J. Cho, 2018: Evaluation of Yield and growth responses on paddy rice under the extremely high temperature using temperature gradient field chamber. Korean Journal of Agricultural and Forest Meteorology 20(1), 135-143 (in Korean with English abstract)
  15. Oh, S. H., J. S. Choi, S. Y. Oh, and T. H. Kim, 2023: Adaptable Rice Cultivars and Transplanting Time for Extremely Early Rice Double Cropping System in the Yeongnam Plains. Journal of Agriculture & Life Science 57(2), 49-62.
  16. Qiu, L., E. S. Im, J. Hur, and K. M. Shim, 2020: Added value of very high resolution climate simulations over South Korea using WRF modeling system. Climate Dynamics 54(1), 173-189. https://doi.org/10.1007/s00382-019-04992-x
  17. Saha, S., S. Moorthi, X. Wu, J. Wang, S. Nadiga, P. Tripp, D. Behringer, Y.-T, Hou, H. Chuang, M. Iredell, M. Ek, J. Meng, R. Yang, M. P. Mendez, H.Dool, O. Zhang, W. Wang, M. Chen, and E. Becker 2014: The NCEP climate forecast system version 2. Journal of Climate 27, 2185-2208. https://doi.org/10.1175/JCLI-D-12-00823.1
  18. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3.