• Title/Summary/Keyword: Forecasts

Search Result 804, Processing Time 0.131 seconds

The Effect of Earnings Quality on Financial Analysts' Dividend Forecast Accuracy: Evidence from Korea

  • NAM, Hye-Jeong
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.4
    • /
    • pp.91-98
    • /
    • 2019
  • Dividend policy is an important business decision and is considered a channel to communicate a firm's performance to shareholders. Given the empirical findings that earnings quality significantly affects financial analysts' forecasting activities, it is predicted that higher earnings quality would positively influence forecast accuracy. Specifically, it is expected that financial analysts would forecast dividends more accurately for firms with higher earning quality. Unlike the research on financial analysts' earnings forecasts was heavily conducted, there is little study about financial analysts' dividend forecasts. This paper examines the effect of earnings quality on financial analysts' dividend forecast accuracy. We use a sample of South Korean firms for the period of 2011-2015 for multivariate regression. Earnings quality is measured by accruals quality and performance-adjusted discretionary accruals followed by prior studies. We first compare the accuracy between dividend forecasts and earnings forecasts using t-test and Wilcoxon singed-rank test. It is confirmed that financial analysts' dividend forecasts are more accurate than earnings forecasts in Korea. We find that financial analysts' dividend forecasts are more accurate for firms with higher earnings quality. We also find that the result is still valid after controlling for the accuracy of financial analysts' earnings forecasts. This confirms that earnings quality positively affects financial analysts' dividend forecasts.

Probabilistic Forecasting of Seasonal Inflow to Reservoir (계절별 저수지 유입량의 확률예측)

  • Kang, Jaewon
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.965-977
    • /
    • 2013
  • Reliable long-term streamflow forecasting is invaluable for water resource planning and management which allocates water supply according to the demand of water users. It is necessary to get probabilistic forecasts to establish risk-based reservoir operation policies. Probabilistic forecasts may be useful for the users who assess and manage risks according to decision-making responding forecasting results. Probabilistic forecasting of seasonal inflow to Andong dam is performed and assessed using selected predictors from sea surface temperature and 500 hPa geopotential height data. Categorical probability forecast by Piechota's method and logistic regression analysis, and probability forecast by conditional probability density function are used to forecast seasonal inflow. Kernel density function is used in categorical probability forecast by Piechota's method and probability forecast by conditional probability density function. The results of categorical probability forecasts are assessed by Brier skill score. The assessment reveals that the categorical probability forecasts are better than the reference forecasts. The results of forecasts using conditional probability density function are assessed by qualitative approach and transformed categorical probability forecasts. The assessment of the forecasts which are transformed to categorical probability forecasts shows that the results of the forecasts by conditional probability density function are much better than those of the forecasts by Piechota's method and logistic regression analysis except for winter season data.

Earnings Forecasts and Firm Characteristics in the Wholesale and Retail Industries

  • LIM, Seung-Yeon
    • Journal of Distribution Science
    • /
    • v.20 no.12
    • /
    • pp.117-123
    • /
    • 2022
  • Purpose: This study investigates the relationship between earnings forecasts estimated from a cross-sectional earnings forecast model and firm characteristics such as firm size, sales volatility, and earnings volatility. Research design, data and methodology: The association between earnings forecasts and the aforementioned firm characteristics is examined using 214 firm-year observations with analyst following and 848 firm-year observations without analyst following for the period of 2011-2019. I estimate future earnings using a cross-sectional earnings forecast model, and then compare these model-based earnings forecasts with analysts' earnings forecasts in terms of forecast bias and forecast accuracy. The earnings forecast bias and accuracy are regressed on firm size, sales volatility, and earnings volatility. Results: For a sample with analyst following, I find that the model-based earnings forecasts are more accurate as the firm size is larger, whereas the analysts' earnings forecasts are less biased and more accurate as the firm size is larger. However, for a sample without analyst following, I find that the model-based earnings forecasts are more pessimistic and less accurate as firms' past earnings are more volatile. Conclusions: Although model-based earnings forecasts are useful for evaluating firms without analyst following, their accuracy depends on the firms' earnings volatility.

Nonlinearities and Forecasting in the Economic Time Series

  • Lee, Woo-Rhee
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.931-954
    • /
    • 2003
  • It is widely recognized that economic time series involved not only the linearities but also the non-linearities. In this paper, when the economic time series data have the nonlinear characteristics we propose the forecasts method using combinations of both forecasts from linear and nonlinear models. In empirical study, we compare the forecasting performance of 4 exchange rates models(AR, GARCH, AR+GARCH, Bilinear model) and combination of these forecasts for dairly Won/Dollar exchange rates returns. The combination method is selected by the estimated individual forecast errors using Monte Carlo simulations. And this study shows that the combined forecasts using unrestricted least squares method is performed substantially better than any other combined forecasts or individual forecasts.

IMPROVING THE ESP ACCURACY WITH COMBINATION OF PROBABILISTIC FORECASTS

  • Yu, Seung-Oh;Kim, Young-Oh
    • Water Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.101-109
    • /
    • 2004
  • Aggregating information by combining forecasts from two or more forecasting methods is an alternative to using forecasts from just a single method to improve forecast accuracy. This paper describes the development and use of a monthly inflow forecast model based on an optimal linear combination (OLC) of forecasts derived from naive, persistence, and Ensemble Streamflow Prediction (ESP) forecasts. Using the cross-validation technique, the OLC model made 1-month ahead probabilistic forecasts for the Chungju multi-purpose dam inflows for 15 years. For most of the verification months, the skill associated with the OLC forecast was superior to those drawn from the individual forecast techniques. Therefore this study demonstrates that OLC can improve the accuracy of the ESP forecast, especially during the dry season. This study also examined the value of the OLC forecasts in reservoir operations. Stochastic Dynamic Programming (SDP) derived the optimal operating policy for the Chungju multi-purpose dam operation and the derived policy was simulated using the 15-year observed inflows. The simulation results showed the SDP model that updated its probability from the new OLC forecast provided more efficient operation decisions than the conventional SDP model.

  • PDF

Economic Value Analysis of Asian Dust Forecasts Using Decision Tree-Focused on Medicine Inventory Management (의사결정트리를 활용한 황사예보의 경제적 가치 분석-의약품 재고관리문제를 중심으로)

  • Yoon, Seung-Chul;Lee, Ki-Kwang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.120-126
    • /
    • 2014
  • This paper deals with the economic value analysis of meteorological forecasts for a hypothetical inventory decision-making situation in the pharmaceutical industry. The value of Asian dust (AD) forecasts is assessed in terms of the expected value of profits by using a decision tree, which is transformed from the specific payoff structure. The forecast user is assumed to determine the inventory level by considering base profit, inventory cost, and lost sales cost. We estimate the information value of AD forecasts by comparing the two cases of decision-making with or without the AD forecast. The proposed method is verified for the real data of AD forecasts and events in Seoul during the period 2004~2008. The results indicate that AD forecasts can provide the forecast users with benefits, which have various ranges of values according to the relative rate of inventory and lost sales cost.

Enhancing the radar-based mean areal precipitation forecasts to improve urban flood predictions and uncertainty quantification

  • Nguyen, Duc Hai;Kwon, Hyun-Han;Yoon, Seong-Sim;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.123-123
    • /
    • 2020
  • The present study is aimed to correcting radar-based mean areal precipitation forecasts to improve urban flood predictions and uncertainty analysis of water levels contributed at each stage in the process. For this reason, a long short-term memory (LSTM) network is used to reproduce three-hour mean areal precipitation (MAP) forecasts from the quantitative precipitation forecasts (QPFs) of the McGill Algorithm for Precipitation nowcasting by Lagrangian Extrapolation (MAPLE). The Gangnam urban catchment located in Seoul, South Korea, was selected as a case study for the purpose. A database was established based on 24 heavy rainfall events, 22 grid points from the MAPLE system and the observed MAP values estimated from five ground rain gauges of KMA Automatic Weather System. The corrected MAP forecasts were input into the developed coupled 1D/2D model to predict water levels and relevant inundation areas. The results indicate the viability of the proposed framework for generating three-hour MAP forecasts and urban flooding predictions. For the analysis uncertainty contributions of the source related to the process, the Bayesian Markov Chain Monte Carlo (MCMC) using delayed rejection and adaptive metropolis algorithm is applied. For this purpose, the uncertainty contributions of the stages such as QPE input, QPF MAP source LSTM-corrected source, and MAP input and the coupled model is discussed.

  • PDF

Assessing the Benefits of Incorporating Rainfall Forecasts into Monthly Flow Forecast System of Tampa Bay Water, Florida (하천 유량 예측 시스템 개선을 위한 강우 예측 자료의 적용성 평가: 플로리다 템파 지역 사례를 중심으로)

  • Hwang, Sye-Woon;Martinez, Chris;Asefa, Tirusew
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.127-135
    • /
    • 2012
  • This paper introduced the flow forecast modeling system that a water management agency in west central Florida, Tampa Bay Water has been operated to forecast monthly rainfall and streamflow in the Tampa Bay region, Florida. We evaluated current 1-year monthly rainfall forecasts and flow forecasts and actual observations to investigate the benefits of incorporating rainfall forecasts into monthly flow forecast. Results for rainfall forecasts showed that the observed annual cycle of monthly rainfall was accurately reproduced by the $50^{th}$ percentile of forecasts. While observed monthly rainfall was within the $25^{th}$ and $75^{th}$ percentile of forecasts for most months, several outliers were found during the dry months especially in the dry year of 2007. The flow forecast results for the three streamflow stations (HRD, MB, and BS) indicated that while the 90 % confidence interval mostly covers the observed monthly streamflow, the $50^{th}$ percentile forecast generally overestimated observed streamflow. Especially for HRD station, observed streamflow was reproduced within $5^{th}$ and $25^{th}$ percentile of forecasts while monthly rainfall observations closely followed the $50^{th}$ percentile of rainfall forecasts. This was due to the historical variability at the station was significantly high and it resulted in a wide range of forecasts. Additionally, it was found that the forecasts for each station tend to converge after several months as the influence of the initial condition diminished. The forecast period to converge to simulation bounds was estimated by comparing the forecast results for 2006 and 2007. We found that initial conditions have influence on forecasts during the first 4-6 months, indicating that FMS forecasts should be updated at least every 4-6 months. That is, knowledge of initial condition (i.e., monthly flow observation in the last-recent month) provided no foreknowledge of the flows after 4-6 months of simulation. Based on the experimental flow forecasts using the observed rainfall data, we found that the 90 % confidence interval band for flow predictions was significantly reduced for all stations. This result evidently shows that accurate short-term rainfall forecasts could reduce the range of streamflow forecasts and improve forecast skill compared to employing the stochastic rainfall forecasts. We expect that the framework employed in this study using available observations could be used to investigate the applicability of existing hydrological and water management modeling system for use of stateof-the-art climate forecasts.

Assessment of predictability of categorical probabilistic long-term forecasts and its quantification for efficient water resources management (효율적인 수자원관리를 위한 범주형 확률장기예보의 예측력 평가 및 정량화)

  • Son, Chanyoung;Jeong, Yerim;Han, Soohee;Cho, Younghyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.8
    • /
    • pp.563-577
    • /
    • 2017
  • As the uncertainty of precipitation increases due to climate change, seasonal forecasting and the use of weather forecasts become essential for efficient water resources management. In this study, the categorical probabilistic long-term forecasts implemented by KMA (Korea Meteorological Administration) since June 2014 was evaluated using assessment indicators of Hit Rate, Reliability Diagram, and Relative Operating Curve (ROC) and a technique for obtaining quantitative precipitation estimates based on probabilistic forecasts was proposed. The probabilistic long-term forecasts showed its maximum predictability of 48% and the quantified precipitation estimates were closely matched with actual observations; maximum correlation coefficient (R) in predictability evaluation for 100% accurate and actual weather forecasts were 0.98 and 0.71, respectively. A precipitation quantification approach utilizing probabilistic forecasts proposed in this study is expected to enable water management considering the uncertainty of precipitation. This method is also expected to be a useful tool for supporting decision-making in the long-term planning for water resources management and reservoir operations.

Downward Influences of Sudden Stratospheric Warming (SSW) in GloSea6: 2018 SSW Case Study (GloSea6 모형에서의 성층권 돌연승온 하층 영향 분석: 2018년 성층권 돌연승온 사례)

  • Dong-Chan Hong;Hyeon-Seon Park;Seok-Woo Son;Joowan Kim;Johan Lee;Yu-Kyung Hyun
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.493-503
    • /
    • 2023
  • This study investigates the downward influences of sudden stratospheric warming (SSW) in February 2018 using a subseasonal-to-seasonal forecast model, Global Seasonal forecasting system version 6 (GloSea6). To quantify the influences of SSW on the tropospheric prediction skills, free-evolving (FREE) forecasts are compared to stratospheric nudging (NUDGED) forecasts where zonal-mean flows in the stratosphere are relaxed to the observation. When the models are initialized on 8 February 2018, both FREE and NUDGED forecasts successfully predicted the SSW and its downward influences. However, FREE forecasts initialized on 25 January 2018 failed to predict the SSW and downward propagation of negative Northern Annular Mode (NAM). NUDGED forecasts with SSW nudging qualitatively well predicted the downward propagation of negative NAM. In quantity, NUDGED forecasts exhibit a higher mean squared skill score of 500 hPa geopotential height than FREE forecasts in late February and early March. The surface air temperature and precipitation are also better predicted. Cold and dry anomalies over the Eurasia are particularly well predicted in NUDGED compared to FREE forecasts. These results suggest that a successful prediction of SSW could improve the surface prediction skills on subseasonal-to-seasonal time scale.