• Title/Summary/Keyword: 저항열

Search Result 1,197, Processing Time 0.024 seconds

Analysis of Heat Transmission Characteristics through Air-Inflated Double Layer Film by Using Thermal Resistance Equation (열저항식을 이용한 공기막 이중필름의 관류전열량 특성 분석)

  • Kim, Hyung-Kweon;Jeon, Jong-Gil;Paek, Yee;Lee, Sang-Ho;Yun, Nam-Kyu;Yoo, Ju-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.316-321
    • /
    • 2013
  • This study was carried out to analyze heat transfer characteristics and heat flow through air-inflated double layer PO film with thermal resistance method. The experiments was conducted in the laboratory controlled air temperature between 258.0 K and 278.0 K. The experimental materials were made up two layers PO film and an inflated-air layer. The thickness of air-inflated layer was fixed at 3 types of 110, 175, 225 mm. The electrical circuit analogy for heat transfer by conduction, radiation and convection was introduced. Experimental data shows that the dominant thermal resistance in heat transfer through the air-inflated double layer film was convection. Calculation errors were 1.1~18.5 W for heat flow. In result, the method of thermal resistance could be introduced for analysis of heat flow characteristics through air-inflated double layer film.

Analysis and modeling of thermal resistance of multi fin/finger FinFETs (멀티 핀/핑거 FinFET 트랜지스터의 열 저항 해석과 모델링)

  • Jang, MoonYong;Kim, SoYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.39-48
    • /
    • 2016
  • In this paper, we propose thermal resistance compact model of FinFET structure that has hexagon shaped source/drain. The heating effect and thermal properties were increased by reduced size of the device, and thermal resistance is an important factor to analyze the effect and the properties. The heat source and each contact that is moved heat out were set up in transistor, and domain is divided by the heat source and the four parts of contacts : source, drain, gate, substrate. Each contact thermal resistance model is subdivided as a easily interpretable structure by analyzing the temperature and heat flow of the TCAD simulation results. The domains are modeled based on an integration or conformal mapping method through the structure parameters according to its structure. First modeled by analyzing the thermal resistance to a single fin, and applying the change in the parameter of the channel increases to improve the accuracy of the thermal resistance model of the multi-fin/ finger. The proposed thermal resistance model was compared to the thermal resistance by analyzing results of the 3D Technology CAD simulations, and the proposed total thermal resistance model has an error of 3 % less in single and multi-finl. The proposed thermal resistance model can predict the thermal resistance due to the increase of the fin / finger, and the circuit characteristics can be improved by calculating the self-heating effect and thermal characterization.

Effect of Die Attach Process Variation on LED Device Thermal Resistance Property (Die attach 공정조건에 따른 LED 소자의 열 저항 특성 변화)

  • Song, Hye-Jeong;Cho, Hyun-Min;Lee, Seung-Ik;Lee, Cheol-Kyun;Shin, Mu-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.390-391
    • /
    • 2007
  • LED Packaging 과정 중 Die bond 재료로 Silver epoxy를 사용하여 Packaging 한 후 T3Ster 장비로 열 저항 값(Rth)을 측정하였다. Silver epoxy 의 접착 두께를 조절하여 열 저항 값을 측정하였고, 열전도도 값이 다른 Silver epoxy를 사용하여 열 저항 값을 측정하였다. Silver epoxy 접착 두께가 충분하여 Chip 전면에 고루 분포되었을 경우 그렇지 않은 경우보다 평균 4.8K/W 낮은 13.23K/W의 열 저항 값을 나타내었고, 열전도도가 높은 Silver epoxy 일수록 열전도도가 낮은 재료보다 평균 4.1K/W 낮은 12K/W의 열 저항 값을 나타내었다.

  • PDF

Development of Environmentally Friendly Backfill Materials for Underground Power Cables Considering Thermal Resistivity (열 저항특성을 고려한 지중송전관로 친환경 되메움재 개발)

  • Kim, Daehong;Oh, Gidae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.13-26
    • /
    • 2011
  • Because the allowable current loading of buried electrical transmission cables is frequently limited by the maximum permissible temperature of the cable or of the surrounding ground, there is a need for cable backfill materials to be maintained at a low thermal resistivity during the service period. Temperatures greater than $50^{\circ}C$ to $60^{\circ}C$ may lead to breakdown of cable insulation and thermal runaway if the surrounding backfill material is unable to dissipate the heat as rapidly as it is generated. This paper describes the results of studies aimed at the development of backfill material to reduce the thermal resistivity. A large number of different additive materials were tested to determine their applicability as a substitute material. The results of Dong-rim river sand (relatively uniform) show that as water content level increases, thermal resistivity tends to decrease, whereas the thermal resistivity on dry condition is very high value($260^{\circ}C-cm/watt$). In addition, other materials(such as Jinsan granite screenings, A-2(sand and gravel mixture), E-1(rubble and granite screenings mixture) and SGFC(sand, gravel, fly-ash and cement mixture)) are well-graded materials with low thermal resistivity($100^{\circ}C-cm/watt$ when dry). Based on this research, 4 types of improved materials were suggested as the environmentally friendly backfill materials with low thermal resistivity.

Thermal-Fluid Coupled Analysis for Injection Molding Process by Considering Thermal Contact Resistance (사출금형의 열접촉 저항을 고려한 성형과정의 열-유동 연계해석)

  • Sohn, Dong-Hwi;Kim, Kyung-Min;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1627-1633
    • /
    • 2011
  • Injection molds are generally fabricated by assembling a number of plates in which the core and cavity components are assembled. This assembled structure has a number of contact interfaces where the heat transfer characteristics are affected by thermal contact resistance. In previous studies, numerical approaches were investigated to predict the effect of thermal contact resistance on the temperature distribution of injection molds. In this study, thermal-fluid coupled numerical analyses are performed to take into account the thermal contact effect on the numerical evaluation of the mold filling characteristics. Comparisons with experimental results show that the proposed coupled analysis provides more reliable results than the conventional analyses in predicting the mold filling characteristics by taking into account the effect of thermal contact resistance inside the injection mold assembly.

Thermal Contact Resistance of Two Bodies in Contact (접촉하는 두 물체 사이의 접촉 열저항)

  • Kwak Hong Sup;Jeong Jae Tack
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.66-72
    • /
    • 2004
  • 전도 열전달 분야에서 두 물체가 접해 있는 경우, 접촉 열저항은 고려해야 할 중요한 요소이다. 특히 최근에는 전자부품의 과열방지를 위한 열 소산과 관련하여 접촉 열저항 문제는 중요하게 대두되고 있으며 이에 관련한 많은 이론적 연구와 응용연구가 수행되고 있다. 접촉 열저항은 주로 거친 두 물체표면의 불완전접촉에 기인한다. 본 연구에서는, 접촉하는 두 물체사이의 접촉면을 이상화시킨 비교적 간단한 문제를 이론적으로 해석함으로써 접촉면의 틈새 형상 및 비접촉면적비(비접촉면적/외관접촉면적)의 크기에 따른 접촉 열저항의 크기를 구하였다.

Thermal Characteristics of Miniature Heat Pipes Using MWNT(Multi Walled Carbon Nanotube) Nanofluids (다중벽 탄소나노튜브 나노유체를 사용한 소형 히트파이프의 열특성)

  • Ha, Hyo-Jun;Hwang, Kyo-Sik;Jang, Seok-Pil
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.632-635
    • /
    • 2010
  • 본 논문에서는 다중벽 탄소 나노튜브를 작동유체로 사용하는 전자장치 냉각용 소형 히트파이프의 열적성능을 실험적으로 확인 하였다. 실험의 결과들을 바탕으로 다중벽 탄소 나노튜브 나노유체를 작동유체로 사용하는 히트파이프의 열저항은 동일한 충진량을 가지는 물을 작동유체로 사용한 히트파이프와 비교하여 나노유체의 부피비가 0.5%일때, 최대 18.6% 감소한다. 다중벽 탄소 나노튜브 나노유체의 열저항은 동일한 입열량에서 나노유체의 부피비가 증가 할수록 감소하는 것을 알 수 있다. 이를 통하여 다중벽 탄소 나노튜브 나노유체 히트파이프의 열저항은 나노유체의 부피비에 변화에 따라서 변한다는 것을 확인 할 수 있으며, 추가적으로 증발부에서 유체의 기화로 인한 나노입자의 증착에 의하여 열전달 표면적의 증가 또한 열저항의 감소 원인으로 예측가능 하다.

  • PDF

Study on Thermal Efficiency according to Configuration Change and Contact Resistance of Solar Collector with Single Evacuated Tube-type (단일진공관 태양열집열기의 형상변화 및 접촉저항에 따른 집열효율 연구)

  • Choi, Bo-Won;Yang, Young-Joon
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.189-195
    • /
    • 2014
  • The use of solar energy among renewable energy tends to increase because of its infinity and cleanness of resources. Even though the consumption rate of solar energy in our country is still low, however, in recent years, the research for solar energy have been widely conducted due to policy support of government. This study was performed to investigate the efficiency of heat collection using solar collector with single evacuated tube-type. As the results, the temperature of radiation fin for solar collector with single evacuated tube-type was lower in spite of high temperature of heat pipe compared that of double evacuated tube-type. In order to increase the efficiency of heat collection, it was confirmed that the loss of heat collection due to contact resistance as well as performance improvement for solar collector should be decreased.

Optimization of the Backfill Materials for Underground Power Cables considering Thermal Resistivity Characteristics (I) (열저항 특성을 고려한 지중송전관로 되메움재의 최적화(I))

  • Kim, You-Seong;Cho, Dae-Seong;Park, Young-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.113-121
    • /
    • 2011
  • River sand has generally used for the backfill material of underground power cables. The thermal resistivity of it has $150^{\circ}C$-cm/Watt in wet condition and more than double in dry condition. The final goal of this study is to find the backfill material which has a small change in thermal resistivity with various water contents, for example thermal resistivity is $50^{\circ}C$-cm/Watt and $100^{\circ}C$-cm/Watt in wet and dry conditions respectively. In this study it is presented that the comparison of thermal resistivity using stone powder, crush rock, weathered granite soil and Jumunjin sand as well as river sand in the needle method regarding water content, dry unit weight and particle size distribution. As a result, the thermal resistivity of a material is minimized when they have maximum dry unit weight at optimum moisture content and maximum density by appropriately mixing materials for particle size distribution. Therefore thermal resistivity characteristics should be considered two factors: one is the difference between natural dry condition and dry state after optimum moisture content, and the other is the difference between unit weight of raw material and maximum dry density.

Modified Thermal-divergence Model for a High-power Laser Diode (고출력 레이저 다이오드 광원의 열저항 개선을 위한 하부층 두께 의존성 수정 모델)

  • Yong, Hyeon Joong;Baek, Young Jae;Yu, Dong Il;O, Beom Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.5
    • /
    • pp.193-196
    • /
    • 2019
  • The design and control of thermal flow is important for the operation of high-power laser diodes (LDs). It is necessary to analyze and improve the thermal bottleneck near the active layer of an LD. As the error in prediction of the thermal resistance of an LD is large, typically due to the hyperbolic increase and saturation to linear increase of the thermal resistance as a function of thickness, it is helpful to use a simple, modified divergence model for the improvement and optimization of thermal resistance. The characteristics of LDs are described quite well, in that the values for simulated thermal resistance curves and the thermal cross section followed are almost the same as the values from the model function. Also, the thermal-cross-section curve obtained by differentiating the thermal resistance is good for identifying thermal bottlenecks intuitively, and is also fitted quite well by the model proposed for both a typical LD structure and an improved LD with thin capping and high thermal conductivity.