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Thermal Contact Resistance of Two Bodies in Contact
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Nomenclature 1. Introduction
AR : noncontact area ratio
(noncontact area/apparent contact area) When two nominally flat solid surfaces are
a : height of non-contact slit brought into contact, the actual contact takes place
b  radi ¢ -contact circle only on parts of the interface because of the
radius of non-contact circ

surface roughness. At the interfacial regions where

¢ - width of non-contact annulus the actual contact does not exist, air may be
An, By, G : coefficients present in most instances. However, the heat
F : constriction alleviation factor conduction across the air gap is negligible since the
H . half periodicity of periodic gaps thermal conductivity of air is very low.
ka, ks, ke : thermal conductivity Consequently, the heat conduction from the warmer
q : heat flux solid to the cooler one is restricted within the
R . radius of cylinder actual contact area only. The constriction of heat
R. . thermal contact resistance flow then results in the "thermal contact resistance”
T . temperature at the interface.

Thermal contact resistance problems are remained
as important unresolved problems in many

* 20044 62 299 A4 applications such as electronics, materials science,

x] A3 Addistn et AT and so on. Due to the complexity of the problem
«2 A3, Addsta Z AL T, originated from the dependence of contact

A=z FE A G .ac. . ..
+& 2k T4 (jtjeong@chonnam.ac kr) resistance on the surface roughness, joint pressure
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of the two bodies, elastic or plastic deformations at
the interface, accurate prediction of heat transfer
across the contact surface has been only marginally
successful.

The study of thermal contact resistance dates
back to several decades (Carslaw[1]), and reviews
of this subject are provided by Snaith et all[2]
Yovanovich[3] and Fletcher{4].
Williams[5],  Gibson[6],  and
Yovanovich[7] have modeled the problem with an

Hunter and

Negus and

isothermal contact area on the top surface of an
infinitely long circular cylinder of adiabatic lateral
surface. The case of a cylinder of finite length has
also been treated by Faltin[8] and Gladwell and
Lemczyk[9],
spectrum of boundary conditions. Another popular

whose analysis covers a broad
model is the problem of multiple contact areas on
the surface of a semi infinite solid. In this regard,
Greenwood[10] has considered the case of a single
cluster of circular contacts, while Beck[11] has
treated the case of regularly arranged circular
contacts heated by a uniform heat flux. In a more
recent study, Tio and Sadhal[12] have also treated
the problem of a periodic array of isothermal
contacts, in addition to contact areas heated by a
uniform heat flux.

While the works cited above all involve discrete
contact areas, the problem of a multiply connected
contact region has also been studied. Tio and
Sadhal[13] have modeled this problem with discrete
circular gaps, i.e., regions of no contact, arranged
periodically on the otherwise isothermal surface of
a semi infinite solid. A two dimensional problem
in which two solids are in partial contact at their
interface due to the presence of interstitial
substance has also been considered by Das and
Sadhal[14]. Zhang et al.[15] proposed a rough
contact surface profile model using random
numbers and carried out numerical simulation to

predict the thermal contact resistance.

The purpose of this paper is providing theoretical
solutions of some modeled problems to investigate
the thermal resistance of two contacting bodies.
Two dimensional and axisymmetrical models are
considered and it is assumed that the gaps are very
thin and the air in the gaps is non conductive. For
analysis, the air gap clearance is set to be zero,
while the adiabatic boundary condition is applied on

the gap.

2. Method of Solution
2.1 Model 1 Two Dimensional Periodic
Gaps

For the analysis of thermal contact problem, the
contacting rough surfaces of two solid materials are
modeled as Fig. 1. The contact surface of two
solids consists of actual (real) contact surfaces and
many noncontact gaps. Every gaps are assumed to
be very thin 2 D slits of same width and equally

spaced.
material A material B
ka ks
q non contact slit
. - q—

-

| |

| y |

L J
X

)contact surface

Fig. 1 Modeled contact surface of two bodies

To calculate the thermal resistance of this contact
surface, we have to obtain temperature drop per
unit heat flux in x direction, AT/q, which is
caused by existence of non contact gaps in the
contact surface. From the periodicity and symmetry
of the modeled geometry, it is enough to consider
only a partial region of conduction as Fig. 2. Since
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there is no heat generation, the steady state

temperature field T(x,y) satisfies Laplace equation;

FERPTi

(O<x<x0<y<H) 2.1

where H is the distance between two adjacent

symmetry lines and @ is the half width of the
gap.

H
symmetric
surface

q
—

non-contact slit
L~
y
X

Fig. 2 Boundary condition of Model 1

Since the temperature field is symmetric about
the symmetry lines of geometry (y=0H), the

adiabatic boundary condition is applied, i.e,

aT _y

oy  (0<x<o,y=0,H) (22)

There exists uniform heat flux g in x direction at
X —>» 00 ,

or ,_4

& ok (x>w0<y<H) ©23)

Since the heat flux is in x direction at actual
(real) contact surface, 8T/8y should be zero or
T=const along the real contact surface. This
constant temperature may be taken as 0, without
loss of generality.

T=0 (x=0,a<y<H) (2.4)

The air in the non contact gap is assumed to be

adiabatic, so boundary condition on this very thin

gap is
or

oo
Or (x=00<y<a) (25)

We construct the solution of Eq.(2.1), which
satisfies boundary conditions (2.2) and (2.3) by
using separation of variables.

T(x,y)= %{— % + ZA,,e_T’— cos%}

n=0

(2.6)

Applying boundary condition (2.4) and (2.5) at
appropriate N points on 0<y<H, x=0, we obtain N
linear equations for N unknown coefficients Ag
(n=0,1--N 1) in Eq.(26). Solving these linear
equation, we can obtain A,.

2.2 Model 2 : Circular Gap in the Circular
Contact Surface
As shown in Fig. 3, we consider a circular

cylinder of radius R with a circular gap of radius b.

R

\— adiabatic surface

non-contact circle
bl L~
r
Z

center line
Fig. 3 Boundary condition of Model 2

In this distribution  is

axisymmetric, and the conduction equation in r z

case, temperature

coordinates is
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10, 0T T _
T 8r (r ar )+ 87 =0
0<r<R 0<z< ) 2.7

with boundary conditions

& —0g (0<z<wr=0R) @8)
== -
(0O<r<R,z— ) (2.9)
?EQO (b<r<R,z=0) (2.10)
0z
(0<r<b,z2=0) 211

We construct a solution of (2.7), which satisfies
boundary conditions (2.8) and (29) by using
separation of variables.

grR| z & Ar. -2
T(r,Z)Z‘—k—{—-E‘"ZBnJO( Ina )e R }
n=0 ,

(2.12)
where By’s are roots of Ji(A,)=0 (A0=0, A
1=3.8317, A2=7.0156,--++ ) and Jo and J; are the first
kind of Bessel functions of order 0 and 1,
respectively.
Taking N points between of O0<r<R at z=0 and
applying boundary conditions (2.10) and (2.11) to
(2.12), we obtain N linear equations for N unknown
coefficients Ba (n=0,1,2---N 1). Solving these linear

equations, we can obtain B, .

2.3 Model 3 : Annular Gap in the Circular
Contact Surface

As shown in Fig. 4, we consider a circular
cylinder of radius R with an annular gap of R
c<r<R.

R

\— adiabatic surface

’ \_
non-contact

annulus
q

center line

Fig. 4 Boundary condition of Model 3

In this case, temperature distribution is
axisymmetric and analysis is very similar to Model

2 in section 2.2, except that the boundary conditions

are
T=0 (O<r<c,z=0) (2.13)
gzo (c<r<R,z=0) (2.14)

in stead of Egs.(2.10) and (2.11). We can also

obtain the solution form in this case as

grR| z Ar —%—Z
T(r,z)= R > C,Jy( - Ye
n=0 B

(2.15)

which is similar to Eq.(2.12).

By using boundary conditions (2.13) and (2.14),
we can determine truncated unknown constants G,
in Eq.(2.15) by the same way as in section 2.2.

3. Results and Discussion

Temperature distributions for 3 different model
problems are obtained as in Eqgs.(2.6), (2.12) and
(2.15).

Isothermal lines (lines of T=const.) for Model 1,
2, 3 are shown in Fig. 5, 6, 7 respectively.
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15
xH

Fig. 5 Isothermal lines(b/H=0.5 of Model 1) with
kAT/qH=0.1

05 7 5
zIR
Fig. 6 Isothermal lines(b/R=0.5 of Model 2) with
kAT/qR=0.1

15

7
zIR
Fig. 7 Isothermal lines(c/R=0.5 of Model 3) with
kAT/qR=0.1
Typically, Temperature distribution on the center
of cylinder for Model 3 is plotted in Fig. 8, when

two bodies of same conductivity are contacted.

gt

Fig. 8 Temperature distribution on the center line
(Model 3 with ¢=0.3, 0.5, 0.8 and ka=kgn)

In Fig. 8, we can see that the temperature drop
except linear decrease in the temperature occurs
due to the air gap induced by imperfect contact.
From this temperature drop, we can estimate the
of the

thermal contact resistance R.(=AT/q)

contact surface.

N
T T

Constants -A,- B, -C,

T A M TS S T
0 02 04 06 08 1
AR

Fig. 9 Dimensionless constants Ao, By, (p in Eqgs.
(3.1)~(3.3)

From the analysis of 3 models, the thermal contact
resistance in each model may be written as follows,

for different ka and ks of two contacting solids.
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Model 1
AT 1 1 -24,H
=T AH G ) =
(3.1)
Model 2
Rc=£=—BoR(—l—+'l—)'=iM
q k, kg k
(3.2)
Model 3
RC:A_T:_COR(_L+_1_)=LC'05
q k, kg k
(3.3)

In Eqgs.(3.1)~(3.3), the dimensionless negative
constants Ao, Bo, (v are coefficients in Eqs.(2.6),
(2.12), (2.15),

temperature gradient may be discontinuous across

respectively. Note that the

z=0 for ka=ks and that the right most terms in
Eqgs.(3.1)~(3.3) hold for ka=kgs=k.

The values of constants Ao, Bo, (o are shown in
Fig.9 as functions of the noncontact area ratio AR.
From the result, it can be conjectured that thermal
contact resistance is affected mainly by the
noncontact area ratio AR rather than the geometry
of the contacting surface.

In the Model 3, one of the major components of
the contact resistance is the constriction alleviation
factor F, defined in the study of other investigators
as,

4k c
F=—({0-—)xR
”R( R) . (3.4)

To verify the present work, we calculated the
constriction alleviation factor F in Eq.(3.4) and
compared it with the previous results as shown in
Fig. 10.

As ¢c—0 (perfect contact, AR=0), Rc—0 and F
approaches well to zero in the present result as

shown in Fig. 10. As c—R (no contact, AR—1),

however, R. tend to be infinity and present
numerical calculation shows poor convergence. In
this limit, other methods of approach should be
considered.

— = — - Roess{1949)

Constriction alleviation factor

Fig. 10 Comparison of constriction alleviation
factor F in Eq.(3.4) with previous results

4. Conclusions

We have carried out analytical study pertaining
to the thermal contact resistance of two solid
bodies in contact. For three different configuration
models of contact surfaces, temperature fields are
solved by using separation of variables and the
effects of the noncontact area ratio AR on thermal
contact resistance are studied. The results have
indicated that the noncontact area ratio AR rather
than geometrical configuration of contact surface
has quite strong effects on the thermal contact
resistance. Though it is very difficult to model the
contact of rough surfaces, the results of our
analysis for simple models may show some basic
characteristics of thermal

physical contact

resistance.
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