• 제목/요약/키워드: 저온 장해

검색결과 110건 처리시간 0.046초

MA Strotage Response of Fresh Lemongrass Depending upon Film Source and Storage Temperature (필름종류와 저장온도에 따른 Lemongrass의 MA 저장성 비교)

  • Park, Kuen-Woo;Kang, Ho-Min;Kim, Chung-Ho
    • Horticultural Science & Technology
    • /
    • 제18권1호
    • /
    • pp.18-21
    • /
    • 2000
  • This study was carried out to investigate the MA response of fresh lemongrass (Cymbopogon citratus) depending upon film sources and storage temperatures. The fresh weight loss was significantly lower at 5 and $0^{\circ}C$ than those of higher temperatures. And ceramic $80{\mu}m$ film (CE 80) was more effective in preventing weight loss than CE40. The contents of $CO_2$ and ethylene were much higher in CE 80 wrapping than those in CE 40 ones. Rapid accumulation of $CO_2$ was observed at high storage temperature. However, the ethylene content during whole storage period was higher at $0^{\circ}C$ than those at $5^{\circ}C$, but the level of ethylene was remained below 1ppm and did not adversely affected to lemongrass quality. The treatment of CE 80 at $5^{\circ}C$ was most effective on keeping visual quality and chlorophyll content. The storage durations were up to 48 days at $5^{\circ}C$ and 35 days at $0^{\circ}C$, respectively. Results indicated that CE 80 at $5^{\circ}C$ is an optimal condition for MA storage of lemongrass.

  • PDF

Effect of Silicate Fertilizer on Growth, Physiology and Abiotic Stress Tolerance of Chinese Cabbage Seedlings (규산비료 시용이 배추 묘의 생장과 환경내성에 미치는 영향)

  • Vu, Ngoc-Thang;Kim, Si-Hong;Kim, Seung-Yeon;Choi, Ki-Young;Kim, Il-Seop
    • Journal of Bio-Environment Control
    • /
    • 제24권2호
    • /
    • pp.51-56
    • /
    • 2015
  • The objective of this study was to evaluate the effect of silicate fertilizer on growth, physiology and abiotic stress tolerance of Chinese cabbage seedlings. Five silicate concentrations (8, 16, 32, 64, and 128mM) and control (non-treatment) were applied to Chinese cabbage seedlings twice a week. Three weeks after application of silicate treatment, seedlings were used for treating abiotic stresses and were assessed for growth and physiological characteristics. Growth parameters significantly increased in 8, 16, and 32mM treatments except 64 and 128mM. Total root surface area, total root length, and number of root tips increased in 8, 16 and 32mM treatments, but they decreased in treated seedlings with 64 and 128mM of silicate. The highest growth parameters and root morphology were observed in 8mM treatment. As for the effect on the seedling physiology, transpiration rates decreased while stomatal diffusive resistance increased to increasing silicate concentration. The application of silicate reduced the electrical conductivity, heating and chilling injury index at high and low temperatures. Silicate enhanced drought tolerance of Chinese seedlings by delaying the starting time of wilting point. The starting time of wilting point in the control was 3 days after discontinuation of irrigation, while in the 8, 64 and 128mM of silicate treatments were 4 days, and the 16 and 32mM treatments were 5 days. All plants were wilted after 5 days in control without irrigation whereas it showed in 8mM treatment after 6 days, in 16, 32, 64, 128mM treatments after 7 days.

Inhibitory Effect of Potato Sprouting Inhibitor Chlorpropham on Dry Rot (감자 맹아억제제 Chlorpropham의 마른썩음병 억제 효과)

  • Kyusuk Han;Byung Sup Kim;Sae Jin Hong;Nam Sook Kim
    • Journal of Bio-Environment Control
    • /
    • 제32권2호
    • /
    • pp.165-171
    • /
    • 2023
  • Potato dry rot is one of the potato storage diseases caused by Fusarium species and is a representative pathological disorder that induced post-harvest loss during storage. Chlorpropham treatment for sprouting inhibition is mainly used for room temperature storage of potatoes for processing. In this study, the inhibitory effect of chlorpropham on Fusarium-induced dry rot of potato 'Dano'. To investigate the mycelial growth rate of the dry rot fungus (Fusarium solani Appel & Wollenw), mycelial growth was investigated in a chlorpropham (5.0, 50.4, 503.8, and 5,038 ppm) and prochloraz (0.1, 1.0, 10.0, and 100.0 ppm) medium containing F. oxysporum mycelia. Mycelia were more inhibited as the concentration of chlorpropham and prochloraz increased during incubation at 20℃, and the inhibition rate was 98.2% and 100% when treated with 503.8 ppm of chlorpropham and 10ppm of prochloraz in 14 days, respectively. Potato Dano tubers inoculated with F. oxysporum were dipped in chlorpropham (5.0, 50.4, and 503.8 ppm) and prochloraz (100 ppm) to investigate the effect of preventing dry rot during cold storage at 20℃ and 4℃ in vivo. The disease diameter of potatoes stored at room temperature (about 20℃) was reduced to 13.0 mm in the prochloraz 100 ppm teatment, and 10.7 mm in the chlorpropham 50.4 ppm treatment compared to 13.7 mm in the control tuber at 70 days of storage. The disease progression in all treatments including control was similar with no statistically significant difference at 4℃ air temperature. From the results of this study, it is considered that treatment with 50.4 ppm of chlorpropham after harvest will be useful for suppressing dry rot of stored potatoes.

Evaluation of the Fruit Quality Indices during Maturation and Ripening and the Influence of Short-term Temperature Management on Shelf-life during Simulated Exportation in 'Changjo' Pears (Pyrus pyrifolia Nakai) (배 신품종 '창조'의 성숙 중 품질 요인 변화 및 수송온도 환경에 따른 반응성)

  • Lee, Ug-Yong;Choi, Jin-Ho;Ahn, Young-Jik;Chun, Jong-Pil
    • Journal of Bio-Environment Control
    • /
    • 제26권4호
    • /
    • pp.378-385
    • /
    • 2017
  • In this study, we evaluated the changes of fruit quality indices during fruit development and ripening in Korean new pear cultivar 'Changjo', developed from a cross between 'Tama' and '81-1-27' ('Danbae' ${\times}$ 'Okusankichi') in 1995 and named in 2009, to determine appropriate harvest time and to enhance the market quality and broaden the cultivation area. The fruits of 'Changjo' pears harvested from 132 days after full bloom (DAFB) to 160 DAFB. Fruit growth and quality indices were monitored at 1 week interval by measuring fruit weight, length, diameter, firmness, and taste related quality indices. The calculated fruit fresh weight increased continuously with fruit development and reached to an average of 594g on Sep. 20 (160 DAFB). The ratio of length to diameter declines as fruit maturation progress, resulting in 0.898 for ripe fruit stage as a round oblate shape. Flesh firmness of 'Changjo' pears showed over 30N until 153 DAFB and then decreased abruptly with fruit ripening, reaching a final level of about 26.44N on 160 DAFB. Starch content of fruit sap was also decreased abruptly after 146 DAFB which decreased almost half of the fruits harvested at 139 DAFB. In parallel with the decrease of flesh firmness, ethanol insoluble solids (EIS) content decreased sharply with fruit ripens, only 50% of EIS was detected on the fruits harvested on 160 DAFB when compared to that of the fruits harvested on 139 DAFB (Aug. 30). The maximum value of soluble solids contents was observed in the fruits harvested on 153 DAFB, resulting in $14.2^{\circ}Brix$. The changes of skin color difference $a^*$ which means loss of green color occurred only after 139 DAFB, coincide with the decrease of SPAD value of the fruit skin. The sugars of the 80% ethanol soluble fraction consisted mainly of fructose, sorbitol, glucose and sucrose, also increased during maturation and ripening. Fructose and sucrose contents were larger than those of glucose and sorbitol in flesh tissues. These results were explained that stored starch is converted to soluble sugars during fruit maturation, mainly in fructose and sucrose increasing the sweetness of this cultivar. Total polyphenols were increased up to middle of fruit maturation (146 DAFB) and then decreased continuously until the end of fruit maturation. Consequently, our results suggested that the commercial harvest time of 'Changjo' pears should not be passed 153 DAFB and late harvest of this cultivar would not good for quality maintenance during shelf-life. As a result of the post-harvest low-temperature acclimation experiment during the short-term transportation period, fruits harvested at 146 DAFB tended to maintain higher firmness after 14 days of simulated marketing at $25^{\circ}C$ compared to fruits harvested at 153 DAFB regardless of temperature set. And, the slower the rate of decrease to the final transport temperature of $5^{\circ}C$, the higher the incidence of internal browning and ethylene production. Therefore, in order to suppress the physiological disorder and to maintain the fruit quality when exporting to Southeast Asia in the 'Chanjo' pears, it is desirable to lower the temperature of the fruits within a short time after harvest and to set the harvest time before 146 days after full bloom.

The Effect of Cultivars, Cultivation Periods and Regions of Chicory on the Storability of Chicon During MA Storage (치커리의 재배일수, 재배지역 그리고 품종이 치콘의 MA 저장성에 미치는 영향)

  • Kang, Ho-Min;Seo, Hyun-Taek;Won, Jae-Hee;Kim, Hyuk-Su;Kim, Il-Seop
    • Journal of Bio-Environment Control
    • /
    • 제19권2호
    • /
    • pp.109-116
    • /
    • 2010
  • Chicons are kinds of sprout vegetables which forced from the roots of chicory (Cichorium intybus L.). Experiments were performed to investigate the proper cultivation period and region of chicories which are 3 different cultivars for improving storability of chicon. The fresh weight of chicon packed with 20 ${\mu}m$ LDPE film decreased less than 0.5% during the storage at $10^{\circ}C$ in all treatments, and Chuncheon region treatment and 'Focus' cultivar treatment showed higher fresh weight loss than the others. And it decreased higher, as the cultivation periods was longer. The oxygen content in film was from 8% to 17% during storage at $10^{\circ}C$. There was not any significantly different oxygen content among cultivar treatments and cultivation region treatments, but 100 days' cultivation period treatment showed the highest content than the others. The carbon dioxide content in film showed around 3% during storage at $10^{\circ}C$. It also did not influenced by cultivars and cultivation regions, but 100 days' cultivation period treatment showed the lowest content than the others. The ethylene content in film was changed dramatically from 2 to 14 ${\mu}l{\cdot}l^{-1}$, and it showed around 8 ${\mu}l{\cdot}l^{-1}$ as approaching to 21 days after storage at $10^{\circ}C$. The visual quality of chicon deteriorated below marketability level from 12 days after storage at $10^{\circ}C$, and that of 'Metafora' cultivars decreased the highest. That of Pyeongchang region treatment was kept higher, and 'Vintor' cultivar treatment showed highest visual quality than the others which were grown in Pyeongchang region. The firmness of chicon increased, as the cultivation period was longer regardless of cutlivars and cultivation regions. The russet spotting that is ethylene injury symptom of chicon appeared at the latter term of storage and was higher in Chuncheon region treatment. Conculsionally, chicory that is for producing chicon should be grown more than 120 days in Kangwon region and grown in high-land region like Pyeongchang to improve the storability of chicon.

Effects of the Initial Storage Temperature of a PA Film-packaged Muskmelon (Cucumismelo L.) during Its Storage (초기 저장온도 및 PA 필름 포장재가 머스크멜론의 저장 중 품질에 미치는 영향)

  • Cha, Hwan-Soo;Lee, Seon-Ah;Kwon, Ki-Hyun;Kim, Byeong-Sam;Choi, Duck-Joo;Youn, Aye-Ree
    • Food Science and Preservation
    • /
    • 제20권1호
    • /
    • pp.14-22
    • /
    • 2013
  • The effects of the initial storage temperature and the PA film packaging on the extension of the shelf-life and the improvement of the postharvest storage quality of muskmelons were studied during their storage. Their storage quality was tested as follows: PA-film-wrapped muskmelons, stored at $2^{\circ}C$ or $7^{\circ}C$ for 30 days after their harvest, were kept at $10^{\circ}C$ for 27 days (total: 57 days). On the fifth day of storage at $10^{\circ}C$ (35th day overall), the weight loss reached 6.4% in the 7-control. However, the 2-PA showed the smallest loss of 2.2%. The soluble solids content and the acidity that were measured before the storage were $10.8^{\circ}Brix$ and 0.26% in all the groups. After 27 days of storage at $10^{\circ}C$ (on the 57th day overall), the values were highest in the 2-PA group with $9.7^{\circ}Brix$ and 0.15%, respectively. Microorganisms were not detected at first; but on the fifth day of storage at $10^{\circ}C$ (35th day overall), their values were 3.87 and 2.68 log CFU/g in the seven-control and the 2-PA, respectively. In other words, the 2-PA was found to be more effective in inhibiting microbial proliferation. In relation to sensory properties such as appearance, flavor, sweetness and chewiness, the 2-PA was superior to the other groups and was found to be most effective in improving the storability of muskmelons. In conclusion, it was found that low-temperature injury and fast storage quality deterioration did not occur in film-wrapped muskmelons that were stored at $2^{\circ}C$ for 30 days after they were harvested.

Development of fermentation·storage mode for kimchi refrigerator to maintain the best quality of kimchi during storage (김치저장 중 최적의 맛 유지를 위한 김치냉장고 발효·보관 모드의 개발)

  • Moon, Song Hee;Kim, Eun Ji;Kim, Eun Jeong;Chang, Hae Choon
    • Korean Journal of Food Science and Technology
    • /
    • 제50권1호
    • /
    • pp.44-54
    • /
    • 2018
  • To maintain the best quality of kimchi during long-term storage, we developed a fermentation storage mode for the kimchi refrigerator. The optimal kimchi fermentation temperature was determined to be $6^{\circ}C$ with fermentation time of 4-7 days in winter and 3-5 days in spring and fall. Based on these results, the fermentation storage mode conditions were programmed to consist of a fermentation temperature of $6^{\circ}C$ and fermentation times of 111 h in winter and 58 h in spring/fall. When kimchi was stored under the developed fermentation storage mode conditions, the total acidity of kimchi was almost the same as that of the control kimchi (stored $-2-\;-1^{\circ}C$ for 12 weeks). However, the number of lactic acid bacteria (LAB) and Leuconostoc sp. in kimchi were higher ($10^1-10^2CFU/mL$) than those in the control kimchi during storage. In addition, kimchi fermented and stored under the fermentation storage mode clearly received higher scores for overall preference than the control kimchi.

High Quality and High Yielding Rice Variety 'Cheongdam' Adaptable to Direct Seeding (고품질 다수성 직파재배적성 신품종 '청담벼')

  • Choi, Im-Soo;Kang, Kyung-Ho;Jeong, O-Young;Jeong, Eung-Gi;Cho, Young-Chan;Kim, Yeon-Gyu;Kim, Myeong-Ki;O, Myeong-Gyu;Choi, In-Bea;Jeon, Yong-Hee;Won, Young-Jae;Shin, Young-Seoup;Oh, In-seok
    • Korean Journal of Breeding Science
    • /
    • 제43권6호
    • /
    • pp.581-586
    • /
    • 2011
  • 'Cheongdam' is a japonica rice variety developed from a cross between SR19200-HB826-34, a line of good germination ability and shoot emergence at low temperature and Juanbyeo, good quality and direct-seeding adaptable cultivar by the rice breeding team of National Institute of Crop Science, RDA in 2006. This variety has 153 days of total growth duration from seeding to maturity in direct-seeding, and 160 days of growth duration from seeding to maturity in transplanting. This is erect plant type with culm length of 74 cm, thick culm, and green leaves. It has large panicle shape with 126 and 140 spikelets per panicle in direct-seeding and transplanting, respectively. Milled rice is transluscent and medium in grain size of non-glutinous endosperm. This variety is susceptible to leaf and neck blast, bacterial blight, stripe virus disease and brown planthopper. The yield potential of 'Cheongdam' is 5.84 MT/ha at ordinary transplanting culture and 5.62 MT/ha and 5.89 MT/ha at wet direct-seeding and dry direct-seeding cultures, respectively in the local adaptability test for three years. 'Cheongdam' would be adaptable to middle and southern plain of Korea for direct-seeding culture and transplanting rice culture.

Changes of Yield and Quality in Potato (Solanum tuberosum L.) by Heat Treatment (폭염처리에 의한 감자의 수량성과 품질 변화)

  • Lee, Gyu-Bin;Choi, Jang-Gyu;Park, Young-Eun;Jung, Gun-Ho;Kwon, Do-Hee;Jo, Kwang-Ryong;Cheon, Chung-Gi;Chang, Dong Chil;Jin, Yong-Ik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • 제24권3호
    • /
    • pp.145-154
    • /
    • 2022
  • Due to abnormal weather conditions caused by climate change, natural disasters and damages are gradually increasing around the world. Global climate change as accompanied by warming is projected to exert adverse impact on production of potato, which is known as cool season crop. Even though, role of potato as a food security crop is expected to increase in the future, the climate change impacts on potato and adaption strategies are not sufficiently established. Therefore, this study was conducted to analyze the damage pattern of potatoes due to high temperature treatment and to evaluate the response of cultivars. T he high temperature treatment (35~38℃) induced heat stress by sealing the plastic house in midsummer (July), and the quantity and quality characteristics of potatoes were compared with the control group. T otal yield, marketable yield (>80 g) and the number of tubers per plants decreased when heat treatment was performed, and statistical significance was evident. In the heat treatment, 'Jayoung' cultivar suffered a high heat damage with an 84% reduction in yield of >80 g compared to the control group. However, in Jopung cultivar, the decrease was relatively small at 26%. Tuber physiological disturbances (Secondary growth, Tuber cracking, Malformation) tended to increase in the heat stress. Under heat conditions, the tubers were elongated overall, which means that the marketability of potatoes was lowered. T he tuber firmness and dry matter content tended to decrease significantly in the heat-treated group. T herefore, the yield and quality of tubers were damaged when growing potatoes in heat conditions. T he cultivar with high heat adaptability was 'Jopung'. T his result can be used as basic data for potato growers and breeding of heat-resistant cultivars.

Cultural Practices for Reducing Cold Wind Damage of Rice Plant in Eastern Coastal Area of Korea (동해안지대 도작의 냉조풍피해와 피해경감대책)

  • 이승필;김칠용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제36권5호
    • /
    • pp.407-428
    • /
    • 1991
  • The eastern coastal area having variability of climate is located within Taebaek mountain range and the east coast of Korea. It is therefore ease to cause the wind damages in paddy field during rice growing season. The wind damages to rice plant in this area were mainly caused by the Fohn wind (dry and hot wind) blowing over the Taebaek mountain range and the cold humid wind from the coast. The dry wind cause such as the white head, broken leaves, cut-leaves, dried leaves, shattering of grain, glume discolouration and lodging, On the other hand the cold humid wind derived from Ootsuku air mass in summer cause such symptom as the poor rice growth, degeneration of rachis brenches and poor ripening. To minimize the wind damages and utilize as a preparatory data for wind injury of rice in future, several experiments such as the selection of wind resistant variety to wind damage, determination of optimum transplanting date, improvement of fertilizer application methods, improvement of soils and effect of wind break net were carried out for 8 years from 1982 to 1989 in the eastern coastal area. The results obtained are summarized as follows. 1. According to available statisical data from Korean meteorological services (1954-1989) it is apperent that cold humid winds frequently cause damage to rice fields from August 10th to September 10th, it is therefore advisable to plan rice cultivation in such a way that the heading date should not be later than August 10th. 2. During the rice production season, two winds cause severe damage to the rice fields in eastern coastal area of Korea. One is the Fohn winds blowing over the Taebaek mountain range and the other is the cold humid wind form the coast. The frequency of occurrence of each wind was 25%. 3. To avoid damage caused by typhoon winds three different varieties of rice were planted at various areas. 4. In the eastern coastal area of Korea, the optimum ripening temperature for rice was about 22.2$^{\circ}C$ and the optimum heading date wad August 10th. The optimum transplanting time for the earily maturity variety was June 10th., medium maturity variety was May 20th and that of late maturity was May 10th by means of growing days degree (GDD) from transplanting date to heading date. 5.38% of this coastal area is sandy loamy soil while 28% is high humus soil. These soil types are very poor for rice cultivation. In this coastal area, the water table is high, the drainage is poor and the water temperature is low. The low water temperature makes it difficult for urea to dissolve, as a result rice growth was delayed, and the rice plant became sterile. But over application of urea resulted in blast disease in rice plants. It is therefore advise that Ammonium sulphate is used in this area instead of urea. 6. The low temperature of the soil inhibits activities of microorganism for phosphorus utilization so the rice plant could not easily absorb the phosphorus in the soil. Therefore phosphorus should be applied in splits from transplanting to panicle initiation rather than based application. 7. Wind damage was severe in the sandy loamy soil as compared to clay soils. With the application of silicate. compost and soil from mointain area. the sand loamy soil was improved for rice grain colour and ripening. 8. The use of wind break nets created a mocro-climate such as increased air. soil and water temperature as well as the reduction of wind velocity by 30%. This hastened rice growth, reduced white head and glume discolouration. improved rice quality and increased yield. 9. Two meter high wind break net was used around the rice experimental fields and the top of it. The material was polyethylene sheets. The optimum spacing was 0.5Cm x 0.5Cm. and that of setting up the wind break net was before panicle initiation. With this set up, the field was avoided off th cold humid wind and the Fohn. The yield in the treatment was 20% higher than the control. 10. After typhoon, paddy field was irrigated deeply and water was sprayed to reduce white head, glume discolouration, so rice yield was increased because of increasing ripening ratio and 1, 000 grain weight.

  • PDF