DOI QR코드

DOI QR Code

Effect of Silicate Fertilizer on Growth, Physiology and Abiotic Stress Tolerance of Chinese Cabbage Seedlings

규산비료 시용이 배추 묘의 생장과 환경내성에 미치는 영향

  • Vu, Ngoc-Thang (Department of Horticulture, Kangwon National University) ;
  • Kim, Si-Hong (Department of Horticulture, Kangwon National University) ;
  • Kim, Seung-Yeon (Department of Horticulture, Kangwon National University) ;
  • Choi, Ki-Young (College of Agriculture and Life Science, Kangwon National University) ;
  • Kim, Il-Seop (Department of Horticulture, Kangwon National University)
  • Received : 2015.01.19
  • Accepted : 2015.03.24
  • Published : 2015.06.30

Abstract

The objective of this study was to evaluate the effect of silicate fertilizer on growth, physiology and abiotic stress tolerance of Chinese cabbage seedlings. Five silicate concentrations (8, 16, 32, 64, and 128mM) and control (non-treatment) were applied to Chinese cabbage seedlings twice a week. Three weeks after application of silicate treatment, seedlings were used for treating abiotic stresses and were assessed for growth and physiological characteristics. Growth parameters significantly increased in 8, 16, and 32mM treatments except 64 and 128mM. Total root surface area, total root length, and number of root tips increased in 8, 16 and 32mM treatments, but they decreased in treated seedlings with 64 and 128mM of silicate. The highest growth parameters and root morphology were observed in 8mM treatment. As for the effect on the seedling physiology, transpiration rates decreased while stomatal diffusive resistance increased to increasing silicate concentration. The application of silicate reduced the electrical conductivity, heating and chilling injury index at high and low temperatures. Silicate enhanced drought tolerance of Chinese seedlings by delaying the starting time of wilting point. The starting time of wilting point in the control was 3 days after discontinuation of irrigation, while in the 8, 64 and 128mM of silicate treatments were 4 days, and the 16 and 32mM treatments were 5 days. All plants were wilted after 5 days in control without irrigation whereas it showed in 8mM treatment after 6 days, in 16, 32, 64, 128mM treatments after 7 days.

규산은 작물의 필수원소에는 포함되어있지 않으나, 화본과 작물을 중심으로 내도복성과 병충해 저항성의 향상, 군락구조 개선에 의한 광합성 능력의 향상 등에서 폭 넓게 그 유용성이 알려져 왔으며, 최근에는 원예작물에서도 규산질 비료의 시용이 수량이나 병충해저항성을 향상시키는 효과가 입증되고 있어 친환경농업 관점에서도 주목을 밭고 있다. 본 실험은 배추 육묘 중 규산질 비료의 시용이 묘소질과 저온, 고온, 건조 등 환경내성에 미치는 영향을 검토하기 위하여 수행하였다. 규산염 처리농도를 8, 16, 32, 64 및 128mM로 설계하여 주 2회 관주 처리 하고, 처리 3주 후에 생육조사 및 스트레스 내성에 대해 평가하였다. 생육조사 결과, 8, 16 및 32m의 농도에서는 대부분의 생육지표가 대조구에 비해 약간 증가하는 경향을 보였으나 8mM처리만 제외하고 통계적 유의차는 나타나지 않았다. 고농도인 128mM의 규산 처리구에서는 모든 생육 지표가 감소하였다. 총 뿌리 면적, 뿌리 길이 및 근단 수는 8, 16 및 32mM의 농도에서 증가했지만 64 및 128mM의 처리구에서는 감소하였다. 규산 처리 농도가 증가함에 따라 증산 속도는 감소한 반면 기공확산 저항은 증가하는 경향을 보였다. 상대적 이온 누출율도 대조구에 비해 규산염 처리구에서 감소되었으나, 처리 농도간 유의차는 나타나지 않았다. 규산처리에 의해 고온과 저온 장해 지표도 감소되었으며, 농도간에는16과 32mM이 가장 효과적이었다. 규산처리에 따라 건조내성도 증가하여 대조구는 단수 후 3일째부터 위조되기 시작하여 5일째는 전 개체가 위조하였으나, 규산처리구는 4일(8, 64, 128 mM) 또는 5일(16과 32mM) 부터 위조가 시작되어 6일(8mM)이나 7일(16, 32, 64및 128 mM)이 지나서야 모든 공시 개체가 위조되었다.

Keywords

References

  1. Adatia, M.H. and R.T. Besford. 1986. The effects of silicon on cucumber plants grown in recirculating nutrient solution. Ann. Bot. 58:343-351. https://doi.org/10.1093/oxfordjournals.aob.a087212
  2. Anderson, D.L., D.B. Jones, and G.H. Snyder. 1987. Response of a rice-sugarcane rotation to calcium silicate slag on Everglade Histosols. Agron. J. 79:531-535. https://doi.org/10.2134/agronj1987.00021962007900030026x
  3. Arsenault J.L., S. Pouleur, C. Messier, and R. Guay. 1995. WinRHIZO, a root-measuring system with a unique overlap correction method. Hort.Sci. 30:906.
  4. Cheigh, H.S. and K.Y. Park. 1994. Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). Crit. Rev. Food Sci. Nutr. 34:175-203. https://doi.org/10.1080/10408399409527656
  5. Edward, S.H., G.J. Gascho, and J.J. Street. 1982. Response of sugarcane to silicate source and rate. I. Growth and yield. Agron. J. 74:481-484.
  6. Epstein, E. 1999. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Bol. 50:641-664. https://doi.org/10.1146/annurev.arplant.50.1.641
  7. Fauteux, F., W. Remus-Borel, J.G. Menzies, and R.R. Belanger. 2005. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol. Lett. 249:1-6. https://doi.org/10.1016/j.femsle.2005.06.034
  8. Gao, X.P., C.Q. Zhou, L.J. Wang, and F.S. Zhang. 2006. Silicon decreases transpiration rate and conductance from stomata of maize plants. J. Plant Nutr. 29:1637-1647. https://doi.org/10.1080/01904160600851494
  9. Gong, H.J., K.M. Chen, G.C. Chen, S.M. Wang, and C.L. Zhang. 2003. Effects of silicon on growth of wheat under drought. J. Plant Nutri. 26:1055-1063. https://doi.org/10.1081/PLN-120020075
  10. Lee. J. E., P.J. Wang, G.G. Kim, S.H. Kim, S.Y. Park, Y.S. Hwang, Y.P. Lim, E.M. Lee, I.K. Ham, M.H. Jo, and G.H. An. 2010. Effect of soil pH on nutritional and functional components of Chinese cabbage (Brassica rapa. ssp. campestris). Kor. J. Hort. Sci. Technol. 28:353-362.
  11. Liang, Y.C. 1999. Effect of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil. 209:217-224. https://doi.org/10.1023/A:1004526604913
  12. Liang, Y.C., J.W.C. Wong, and L. Wei. 2005. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere. 58:475-483. https://doi.org/10.1016/j.chemosphere.2004.09.034
  13. Lu, G. and J.S. Cao. 2001. Effects of silicon on earliness and photosynthetic characteristics of melon. Acta Hort. Sciencia. 28:421-424.
  14. Ma, J.F. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr. 50:11-18. https://doi.org/10.1080/00380768.2004.10408447
  15. Marschner, H., H. Oberle, I. Cakmar, and V. Romheld. 1990. Growth enhancement by silicon in cucumber (Cucumis sativus) plants depends on imbalance in phosphorus and zinc supply. In: Van Bensichem M.L (ed.). Plant nutrition-physiology and applications. Kluwer Academic Publishers, Dordrecht. p. 241-249.
  16. Murchie, E.H. and P. Horton. 1997. Acclimation of photosyn thesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference. Plant Cell Environ. 20:438-448. https://doi.org/10.1046/j.1365-3040.1997.d01-95.x
  17. Seebold, K.W., T.A.Kucharek, L.E. Datnoff, F.J. Correa-Victoria, and M.A. Marchetti. 2001. The influence of silicon on components of resistance to blast in susceptible, partially resistant, and resistant cultivars of rice. Phytopathology. 91:63-69. https://doi.org/10.1094/PHYTO.2001.91.1.63
  18. Singh, K., R. Singh, J.P. Singh, Y. Singh, and K.K. Singh. 2006. Effect of level and time of silicon application on growth, yield and its uptake by rice (Oryza sativa). Indian J. Agric. Sci. 76:410-413.
  19. Trenholm, L.E., L.E. Datnoff, and R.T. Nagata. 2004. Influence of silicon on drought and shade tolerance of st. augustinegrass. HortTechnology. 14:487-490.
  20. Walters, R.G., F. Stephard, J.J.M. Rogers, S.A. Rolfe, and P. Horton. 2003. Identification of mutants of Arabidopsis defective in acclimation of photosynthesis to the light environment. Plant Physiol. 131:472-481. https://doi.org/10.1104/pp.015479
  21. Zhao, M., X. Zhao, Y. Wu, and L. Zhang. 2007. Enhanced sensitivity to oxidative stress in an arabidopsis nitric oxide synthase mutant. J. Plant Physiology. 164:737-745. https://doi.org/10.1016/j.jplph.2006.03.002