DOI QR코드

DOI QR Code

Comparison of Pepper Grafting Efficiency by Grafting Robot

접목로봇의 고추묘 접목 효율성 비교

  • Kim, Hye Min (Department of Horticulture, Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Hwang, Seung Jae (Department of Horticulture, Division of Applied Life Science, Graduate School of Gyeongsang National University)
  • 김혜민 (경상대학교 대학원 응용생명과학부) ;
  • 황승재 (경상대학교 대학원 응용생명과학부)
  • Received : 2015.01.15
  • Accepted : 2015.03.25
  • Published : 2015.06.30

Abstract

Manual grafting is a labor-intensive operation and highly susceptible to human error. Development of grafting robot has been considered as an effective alternative to manual grafting. The study was conducted to investigate the grafting efficiency between the domestically produced automated grafting robot and traditional manual grafting performed in a commercial plug seedling greenhouse. Plug seedlings of pepper (Capsicum annuum L.) 'Buchon' and 'Anseongmatchum' were sown as scions and rootstocks, respectively on March 29, 2013. The grafting was performed by a grafting robot, amateur grafters, and professional grafters on May 31, 2013. After grafting, the seedling efficiencies and seedling characteristics were compared in terms of plant height, the number of success as well as failure of seedling grafts produced in an hour. The results showed that plant heights were most uniform in the grafts performed by the professionals that had a 0.6 cm difference whereas an uneven difference of 2.1 cm difference was observed in plug seedling grafted by an amateur. However, plug seedlings grafted by the grafting robot were found to be uniform with 1 cm plant height difference. Moreover, the maximum number of grafting processed plug seedlings per hour (667 plants) was achieved by the grafting robot on compared with the seedlings grafted (466 plants) by the professionals. Furthermore, the least failure rate of 21.7% was noted upon the usage of grafting robot than the manual grafters. Thus, the results demonstrate that the technology of automated grafting robots is the most appealing and can be employed in commercial plug seedling greenhouses to overcome the drawbacks of manual grafting.

전통적인 접목은 노동 집약적인 작업이며, 접사의 실수에 의한 불량 접목묘가 쉽게 발생할 수 있다. 접목로봇의 개발은 전통적인 접목방법의 대안책으로써 주목받고 있다. 본 연구에서는 상업적으로 생산된 자동 접목로봇과 공정육묘장에서 전통적으로 행해지는 접목방법에서의 접목 효율성을 구명하기 위해 수행되었다. 고추(Capsicum annuum L.) '부촌'과 '안성맞춤' 품종이 각각 접수와 대목으로 2013년 3월 29일에 파종되었으며, 접목로봇과 초보자, 접목 전문가에 의해 2013년 5월 31일에 접목되었다. 접목 후 접목 효율성과 접목 특성을 초장, 시간당 접목 성공률과 실패율로 비교하였다. 초장은 전문가에 의한 접목묘의 초장의 차이가 최대 0.6cm로 가장 균일하게 나타났으나 초보자에 의한 접목묘의 초장 차이는 최대 2.1cm로 가장 불균일하였다. 접목로봇에 의한 접목묘의 최대 초장 차이는 최대 1cm로 균일하였다. 시간당 접목묘의 개수에서 접목로봇에 의해서 접목된 묘의 수는 접목로봇(667주)에서 전문가(466주)에 의한 접목에 비하여 가장 많게 나타났다. 그러나 접목로봇에 의한 접목 실패율은 21.7%로 가장 높게 나타났다. 본 연구 결과는 접목로봇 기술이 농업에서 현장 적용 가치가 있으며, 상업적 공정육묘장에서 사용될 수 있고 전통적인 접목의 단점을 보완할 수 있다는 것을 증명하였다.

Keywords

References

  1. Chung, H.D., Y.J. Choi, and S.H. Shin. 1998. Effects of top dressing fertilizers on growth of pepper plug seedling in vermiculite-based root media. J. Kor. Soc. Hort. Sci. 39:1-7.
  2. Colla, G., Y. Rouphael, M. Cardarelli, A. Salerno, and E. Rea. 2010a. The effectiveness of grafting to improve alkalinity tolerance in watermelon. Environ. Exp. Bot. 68:283-291. https://doi.org/10.1016/j.envexpbot.2009.12.005
  3. Colla, G., C.M.C. Suarez, M. Cardarelli, and Y. Rouphael. 2010b. Improving nitrogen use efficiency in melon by grafting. HortScience 45:559-565.
  4. Colla, G., Y. Rouphael, C. Leopardi, and Z. Bie. 2010c. Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae 127:147-155. https://doi.org/10.1016/j.scienta.2010.08.004
  5. Colla, G., Y. Rouphael, C. Mirabelli, and M. Cardarelli. 2011. Nitrogen-use efficiency traits of mini-watermelon in response to grafting and nitrogen-fertilization doses. J. Plant Nutr. Soil Sci. 174:933-941. https://doi.org/10.1002/jpln.201000325
  6. Fernandez-García, N., M. Carvajal, and E. Olmos. 2004. Graft union formation in tomato plant: Peroxidase and catalase involvement. Ann. Bot. 93:53-60. https://doi.org/10.1093/aob/mch014
  7. Flaishman, M.A., K. Loginovsky, S. Golobowich, and S. Lev-Yadun. 2008. Arabidopsis thaliana as a model system for graft union development in homografts and heterografts. J. Plant Growth Regul. 27:231-239. https://doi.org/10.1007/s00344-008-9050-y
  8. Ito, T. 1992. Springer Netherlands. p. 65-82. In: Transplant Production Systems (eds.). Present state of transplant production practices in Japanese horticultural industry.
  9. Jeong, B.Y. 1996. Cooperative raising seedling. High-technology greenhouse management and cultural technique. The Agriculture and Fishery Development Corporation. p. 465-562.
  10. Jeong, B.R. 1998a. Plug production. Management of and cultural techniques in the high technology glasshouse. Rural Development Corporation p. 451-661.
  11. Jeong, B.R. 1998b. Technology and environment management for the production of plug transplants of flower crops. Kor. J. Hort. Sci. Tech. 16:282-286.
  12. Kim, S.E., M.H. Lee, and Y.S. Kim. 2013a. Efficient light treatment for graft-take and early growth of grafted tomato seedlings. Protected Horticulture Plant Factory 4:322-327.
  13. Kim, S.E., M.H. Lee, and Y.S. Kim. 2013b. Effect of scion age on survival rate and initial yield of the grafted tomato seedlings. Protected Horticulture Plant Factory 4:335-340.
  14. Lee, J.M. 2010. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae 127:93-105. https://doi.org/10.1016/j.scienta.2010.08.003