• 제목/요약/키워드: 저레이놀즈수 모형

검색결과 23건 처리시간 0.023초

레이놀즈수에 따른 이순신대교 거더에 작용하는 공기력의 변화 (Aerodynamic Forces Acting on Yi Sun-sin Bridge Girder According to Reynolds Numbers)

  • 이승호;윤자걸;권순덕
    • 대한토목학회논문집
    • /
    • 제33권1호
    • /
    • pp.93-100
    • /
    • 2013
  • 본 연구에서는 트윈박스 단면인 이순신대교의 레이놀즈수 변화에 따른 공기력의 영향을 살펴보는데 그 목적이 있다. 이를 위하여 1/30 대축척 모형을 제작하여 공군사관학교 아음속 중형 풍동에서 최대 풍속 70m/s까지 풍속을 증가시켜가면서 공기력을 측정하여, 전북대학교 소형풍동에서 수행한 저레이놀즈수 풍동실험 결과와 비교하였다. 본 연구 대상 교량 단면은 레이놀즈수의 영향을 받는 것으로 나타났으며, 고레이놀즈수 실험 결과 기존 저레이놀즈수 실험보다 항력계수는 약 23%정도 낮은 수준인걸로 나타났다. 또한 경계층 촉진장치를 효과적으로 이용하면 기존의 저레이놀즈수 풍동실험 조건에서 고레이놀즈수 모사 실험이 가능한 것으로 판단된다.

난류박리 및 재부착 유동의 해석을 위한 비선형 저레이놀즈수 k -$\varepsilon$ 난류모형의 개발 (A Nonlinear Low-Reynolds-Number k -$\varepsilon$ Model for Turbulent Separated and Reattaching Flows)

  • 박태선;성형진
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.2051-2063
    • /
    • 1995
  • An improved version of nonlinear low-Reynolds-number k-.epsilon. model is developed. In this model, the limiting near-wall behavior and nonlinear Reynolds stress representations are incorporated. Emphasis is placed on the adoption of Ry(.iden. $k^{1}$2/y/.nu.) instead of $y^{[-10]}$ (.iden. $u_{{\tau}/y/{\nu}}$) in the low-Reynolds-number model for predicting turbulent separated and reattaching flows. The non-equilibrium effect is examined to describe recirculating flows away from the wall. The present model is validated by doing the benchmark problem of turbulent flow behind a backward-facing step. The predictions of the present model are cross-checked with the existing measurements and DNS data. The model performance is shown to be generally satisfactory.

DNS 자료에 의한 저레이놀즈수 2차 모멘트 난류모형의 개발 (Development of Low-Reynolds-Number Ssecond Moment Turbulence Closure by DNS Data)

  • 신종근;최영돈
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2572-2592
    • /
    • 1996
  • A low-Reynolds-number second moment turbulence closure was developed with the aid of DNS data. Model coefficients of nonlinear return to isotropy term were derived by use of Cayley-Hamilton theorem and two component turbulence limit condition as the functions of invariances of anisotropy and turbulent Reynolds number. Launder and Tselepidakis' cubic mean pressure strain model was modified to fit the predicted pressure-strain components to the DNS data. Two component turbulence limit condition was the precondition to be satisfied in developing the second moment turbulence closure for the realizable Reynolds stress prediction. But the satisfactions of Reynolds stress level and pressure-strain level of each component were compromised because the satisfaction of both levels was impossible.

역압력구배 영향을 고려한 저레이놀즈수 k-ε 모형의 소산율 방정식 수정 (Modification of Dissipation Rate Equation of Low Reynolds Number k-ε Model Accounting for Adverse Pressure Gradient Effect)

  • 송경;조강래
    • 대한기계학회논문집B
    • /
    • 제23권11호
    • /
    • pp.1399-1409
    • /
    • 1999
  • It is known that previous models are unsatisfactory in predicting adverse pressure gradient turbulent flows. In the present paper, a revised low Reynolds number $k-{\varepsilon}$ model is proposed. In this model, a newly developed term is added lo the dissipation rate equation. In order to reflect appropriate effects for an adverse pressure gradient. The added tenn is derived by considering the distribution of mean velocity and turbulent properties in the turbulent flow with, adverse pressure gradient. The new $k-{\varepsilon}$ model was applied to calculations of flat plate flow with adverse pressure gradient, conical diffuser flow and backward facing step flow. It was found that the three numerical results showed better agreement than other models compared with DNS results and experimental ones.

저레이놀즈수 k-ε 난류모형에 의한 축대칭 모형기관 실린더내 유동의 수치해석 (Numerical Simulation of In-Cylinder Flow for the Axi-symmetric Model Engine by Low Reynolds Number k-ε Turbulence Model)

  • 김원갑;최영돈
    • 한국자동차공학회논문집
    • /
    • 제2권1호
    • /
    • pp.38-50
    • /
    • 1994
  • To improve the efficiency of internal combustion engines, it is necessary to understand mixed air-fuel in-cylinder flow processes accurately at intake and compression strokes. There is experimental and numerical methods to analyse in-cylinder flow process. In numerical method, standard $k-{\varepsilon}$ model with wall function was mostly adopted in in-cylinder flow process. But this type model was not efficiently predicted in the near wall region. Therefore in the present study, low Reynolds number $k-{\varepsilon}$ model was adopted near the cylinder wall and standard $k-{\varepsilon}$ model in other region. Also QUICK scheme was used for convective difference scheme. This study takes axisymmetric reciprocating model engine motored at 200rpm with a centrally located valve, incorporated 60 degree seat angie, and flat piston surface excluding inlet port. Because in-cylinder flow processes are undergoing unsteady and compressible, averaged cylinder pressure and inlet velocity at arbitrary crank angle are determined from thermodynamic analytic method and incylinder states at that crank angle are iteratively determined from the numerical analytic method.

  • PDF

난류박리 및 재부착 유동에 대한 저레이놀즈수 비선형 열전달 모형의 개발 (A Non-linear Low-Reynolds-Number Heat Transfer Model for Turbulent Separated and Reattaching Flows)

  • 리광훈;성형진
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.316-323
    • /
    • 2000
  • A nonlinear low-Reynolds-number heat transfer model is developed to predict turbulent flow and heat transfer in separated and reattaching flows. The $k-{\varepsilon}-f_{\mu}$ model of Park and Sung (1997) is extended to a nonlinear formulation, based on the nonlinear model of Gatski and Speziale (1993). The limiting near-wall behavior is resolved by solving the $f_{\mu}$ elliptic relaxation equation. An improved explicit algebraic heat transfer model is proposed, which is achieved by applying a matrix inversion. The scalar heat fluxes are not aligned with the mean temperature gradients in separated and reattaching flows; a full diffusivity tensor model is required. The near-wall asymptotic behavior is incorporated into the $f_{\lambda}$ function in conjunction with the $f_{\mu}$ elliptic relaxation equation. Predictions of the present model are cross-checked with existing measurements and DNS data. The model preformance is shown to be satisfactory.

약한 역압력구배의 난류유동장 해석을 위한 저레이놀즈수 k-ε 모형 개발 (Development of Low Reynolds Number k-ε Model for Prediction of a Turbulent Flow with a Weak Adverse Pressure Gradient)

  • 송경;조강래
    • 대한기계학회논문집B
    • /
    • 제23권5호
    • /
    • pp.610-620
    • /
    • 1999
  • Recently, numerous modifications of low Reynolds number $k-{\epsilon}$ model have boon carried out with the aid of DNS data. However, the previous models made in this way are too intricate to be used practically. To overcome this shortcoming, a new low Reynolds number $k-{\epsilon}$ model has boon developed by considering the distribution of turbulent properties near the wall. This study proposes the revised a turbulence model for prediction of turbulent flow with adverse pressure gradient and separation. Nondimensional distance $y^+$ in damping functions is changed to $y^*$ and some terms modeled for one dimensional flow in $\epsilon$ equations are expanded into two or three dimensional form. Predicted results by the revised model show an acceptable agreement with DNS data and experimental results. However, for a turbulent flow with severe adverse pressure gradient, an additive term reflecting an adverse pressure gradient effect will have to be considered.

저 레이놀즈수 k-ε난류모형에 의하 축대칭 모형포트 유동의 수치해석적 연구 (A Numerical Study on the Flow of a Model Intake Port Using Low Reynolds Number)

  • 홍용주;김철수;최영돈
    • 한국자동차공학회논문집
    • /
    • 제2권1호
    • /
    • pp.26-37
    • /
    • 1994
  • In this study, flow of a model intake port/valve system is analyzed by using low Reynolds number $k-{\varepsilon}$ model. Discharge coefficient was obtained from computational results for the various cases of valve lifts. Discharge coefficient becomes maximum when the valve lift is 20mm, and does not increase or decrease in proportional to valve lift. Most of pressure drop and production of turbulent kinetic energy occur at the edge points of the valve and the valve seat Thus, in order to improve discharge coefficient, rounding of edge points in valve and valve seat is recommended. As valve lift is increased, the velocity of the intake jet in the valve passage decreases, and the direction of the jet is more inclined toward the valve seat.

  • PDF

난류박리 및 재부착 유동의 해석을 위한 저레이놀즈수 4-방정식 난류모형의 개발 (A Low-Reynolds-Number 4-Equation Model for Turbulent Separated and Reattaching Flows)

  • 이광훈;성형진
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.2039-2050
    • /
    • 1995
  • The nonlinear low-Reynolds-number k..epsilon. model of park and Sung is extended to predict the turbulent heat transports in separated and reattaching flows. The equations of the temperature variance( $k_{\theta}$ and its dissipation rate(.epsilon.$_{\theta}$ are solved, in concert with the equations of the turbulent kinetic energy(k) and its dissiation rate(.epsilon). In the present model, the near-wall effect and the non-equilibrium effect are fully taken into consideration. The validation of the model is then applied to the turbulent flow behind a backward-facing step and the flow over a blunt body. The predicted results of the present model are compared and evaluated with the relevant experiments.