• Title/Summary/Keyword: 재료상식

Search Result 201, Processing Time 0.026 seconds

Selective synthesis of ZnO nanomaterials and their characteristic properties (반도체 ZnO 나노물질의 선택적 합성 및 특성)

  • Kang, Myung-Il;Park, Kwang-Sue;Lee, Jong-Soo;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.19-22
    • /
    • 2002
  • Three different ZnO nanomaterials (nanobelts, nanorods, and nanowires) were synthesized at three different substrate temperatures from the thermal evaporation of ball-milled ZnO powders at $1380^{\circ}C$. Transmission electron microscopy (TEM) revealed that the ZnO nanobelts are single crystalline with the growth direction perpendicular to the (010) lattice planes, and that the ZnO nanorods and nanowires are single crystalline with the growth directions perpendicular to the (001) and (110) lattice planes, respectively. In photoluminescence (PL), the peak energy of near band-edge (NBE) emission was determined for nanobelts, nanorods, and nanowires.

  • PDF

Preparation and Characterization of CdTe Quantum Dots (CdTe 양자점 합성과 물리적 특성 분석)

  • Kim, Hyun-Suk;Song, Hyun-Woo;Cho, Kyung-Ah;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.195-197
    • /
    • 2002
  • CdTe quantum dots(QDs) were synthesized in aqueous solution by colloidal method. Photoluminescence(PL) spectra of the synthesized CdTe QDs revealed the intensity of PL peaks was stronger as the condensation time was longer. This result was thought because annealing effect by thermal energy transferred during condensation eliminated defects which act as traps and recombination centers in CdTe particle. PL intensity has stron dependence of Te precursor concentration. It confirmed the ratio of Te ion to Cd ion added during synthesis affected the particle size and size distribution of the CdTe QDs. Finally, the synthesized CdTe QDs were identified to be cubic structured CdTe quantum dots by X-ray diffraction(XRD).

  • PDF

A study for the distribution of plasma density in RF glow discharge (RF 글로우 방전에서의 플라즈마 밀도의 분포에 대한 연구)

  • Keem, Ki-Hyun;Hwang, Joo-Won;Min, Byeong-Don;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.59-61
    • /
    • 2002
  • In this study we attempted to diagnose the distribution of nitrogen plasma density generated using PECVD(plasma enhanced chemical vapor deposition). The distribution of plasma density formed in a PECVD chamber were measured by DLP2000. The experiment results showed that the plasma density is related to RF power and gas flow rate. As RF power gets higher, the plasma density linearly increased. And the experimental results revealed that a pressure in chamber affects plasma density.

  • PDF

Investigation on the Micro-photoluminescence of ZnO Thin Films Grown by Pulsed Laser Deposition (펄스 레이져 증착법으로 성장한 ZnO 박막의 마이크로 PL 특성 분석)

  • Lee, Deuk-Hee;Leem, Jae-Hyeon;Kim, Sang-Sig;Lee, Sang-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.756-759
    • /
    • 2009
  • We described the growth of undoped ZnO thin films and their optical properties changing with a various growth temperature. The undoped ZnO thin films were grown on $c-Al_2O_3$ substrates using pulsed laser deposition (PLD) at room temperature, 200, 400, and $600^{\circ}C$, respectively. Field emission microscopy (FE-SEM) measurements showed that the grain size of undoped ZnO thin films are increasing as a increase of growth temperature. In addition, we were investigated that the structural and optical properties of undoped ZnO thin films by x-ray diffraction (XRD) and photoluminescence (PL) studied. Also, we could confirmed that the exciton luminescence was strongly related to charge trap by grain boundary of the samples using micro-PL measurement.

Doping Control in ZnO Nanowires Employing Hot-Walled Pulsed Laser Deposition (Hot-Walled PLD를 이용한 ZnO 나노와이어의 도핑 제어)

  • Kim, Kyung-Won;Lee, Se-Han;Song, Yong-Won;Kim, Sang-Sig;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.5-5
    • /
    • 2008
  • We design and demonstrate the controled doping into ZnO nanowires (NWs) adopting self-contrived hot-walled pulsed laser deposition (HW-PLD). Optimized synthesis conditions with the diversified dopants guarantee the excellent crystalinity and morphology as well as electrical properties of the NWs. Proprietary target rotating system in the HW-PLD fuels the controlled formation and doping of the NWs. Prepared NWs sensitive to the environment are systematically characterized, and the doping mechanism is discussed.

  • PDF

Preparation and Characterization of CdTe Quantum Dots (CdTe 양자점 합성과 물리적 특성 분석)

  • 김현석;송현우;조경아;김상식;김성현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.663-668
    • /
    • 2003
  • CdTe quantum dots(QDs) were synthesized in aqueous solution by colloidal method. The synthesized CdTe QDs were identified to be cubic-structured ones by x-ray diffraction(XRD). The photoluminescence(PL) was performed for CdTe QDs prepared as a function of Te precursor concentration, condensation time and aging time. The PL intensity is strongly dependent on Te precursor concentration, indicating that the ratio of Te to Cd ions affects the particle size and size distribution of the CdTe QDs. Our PL study reveals that the intensity of PL peaks strengthens as the condensation time elongates, implying that annealing by thermal energy transferred during condensation would eliminate defects which act as killing centers in CdTe particles. Our photocurrent study suggests that the CdTe QDs materials are one of the prospective materials for optoelectronics including photodetectors.

Development of Photo-sensor for Integrated Lab-On-a-Chip (집적화된 Lab-On-a Chip을 위한 광센서의 제작 및 특성 평가)

  • 김주환;신경식;김용국;김태송;김상식;주병권
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.404-409
    • /
    • 2004
  • We fabricated photo-sensor for fluorescence detection in LOC. LOC is high throughput screening system. Our LOC screens biochemical reaction of protein using the immunoassay, and converts biochemical reaction into electrical signal using LIF(Laser Induced Fluorescence) detection method. Protein is labeled with rhodamine intercalating dye and finger PIN photodiode is used as photo-sensor We measured fluorescence emission of rhodamine dye and analyzed tendency of fluorescence detection, according to photo-sensor size, light intensity, and rhodamine concentration. Detection current was almost linearly proportional to two parameters, intensity and concentration, and was inversely proportional to photo-sensor size. Integrated LOC consists of optical-filter deposited photo-sensor and PDMS microchannel detected 50 (pg/${mu}ell$) rhodamine. For integrated LOC including light source, we used green LED as the light source and measured emitted fluorescence.

Fabrication and Characterization of a Thermoelectric pn Couple Made of Electrospun Oxide Nanofibers (전기방사로 제작된 산화물 나노사 열전 pn 커플의 제작 및 특성)

  • Lee, Donghoon;Cho, Kyoungah;Choi, Jinyoung;Kim, Sangsig
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.4
    • /
    • pp.252-256
    • /
    • 2015
  • In this study, we propose a novel fabrication of an oxide-based lateral thermoelectric pn couple and investigate the characteristics of the thermoelectric couple. Electrospun ZnO and $LaSrCoO_3$ nanofibers are used as n- and p-legs of the couple, respectively. The Seebeck coefficients of the n- and p-type nanofibers and the pn couple are $-98.1{\mu}V/K$, $42.4{\mu}V/K$, and $118.8{\mu}V/K$, respectively. The thermoelectric couple generates an output voltage of $484.7{\mu}V$ at a temperature difference of 4.1 K.

Characteristics of NFGM Devices Constructed with a Single ZnO Nanowire and Al Nanoparticles (ZnO 나노선 트랜지스터를 기반으로 하는 Al 나노입자플로팅 게이트 메모리 소자의 특성)

  • Kim, Sung-Su;Cho, Kyoung-Ah;Kim, Sang-Sig
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.325-327
    • /
    • 2011
  • In this paper, nonvolatile nano-floating gate memory devices are fabricated with ZnO nanowires and Al nanoparticles on a $SiO_2/Si$ substrate. Al nanoparticles used as floating gate nodes are formed by the sputtering method. The fabricated device exhibits a threshold voltage shift of -1.5 V. In addition, we investigate the endurance and retention characteristics of the nano-floating gate memory device.

An Evaluation of Fatigue Life for Aging Aircraft Structure (장기운용항공기 구조물의 잔여 피로수명예측 기법)

  • Lee, Eungyeong;Jeong, Yooin;Kim, Sangshik
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.516-522
    • /
    • 2015
  • Aging aircraft structures are inevitably exposed to environment for a long time facing many potential problems, including corrosion and wide spread fatigue damage, which in turn cause the degradation of flight safety. In this study, the environmental surface damages on aging aircraft structures induced during service were quantitatively analyzed. Additionally, S-N fatigue tests were performed with center hole specimens extracted from aging aircraft structures. From the results of quantitative analyses of the surface damages and fatigue tests, it is concluded that corrosion pits initiated during service reduce the fatigue life significantly. Finally, using the fracture mechanics and the EIFS (equivalent initial flaw size) concepts, the remaining fatigue life was predicted based on actual fatigue test results.