DOI QR코드

DOI QR Code

Fabrication and Characterization of a Thermoelectric pn Couple Made of Electrospun Oxide Nanofibers

전기방사로 제작된 산화물 나노사 열전 pn 커플의 제작 및 특성

  • Lee, Donghoon (Department of Electrical Engineering, Korea University) ;
  • Cho, Kyoungah (Department of Electrical Engineering, Korea University) ;
  • Choi, Jinyoung (Department of Electrical Engineering, Korea University) ;
  • Kim, Sangsig (Department of Electrical Engineering, Korea University)
  • 이동훈 (고려대학교 전기전자공학과) ;
  • 조경아 (고려대학교 전기전자공학과) ;
  • 최진용 (고려대학교 전기전자공학과) ;
  • 김상식 (고려대학교 전기전자공학과)
  • Received : 2015.01.26
  • Accepted : 2015.03.24
  • Published : 2015.04.01

Abstract

In this study, we propose a novel fabrication of an oxide-based lateral thermoelectric pn couple and investigate the characteristics of the thermoelectric couple. Electrospun ZnO and $LaSrCoO_3$ nanofibers are used as n- and p-legs of the couple, respectively. The Seebeck coefficients of the n- and p-type nanofibers and the pn couple are $-98.1{\mu}V/K$, $42.4{\mu}V/K$, and $118.8{\mu}V/K$, respectively. The thermoelectric couple generates an output voltage of $484.7{\mu}V$ at a temperature difference of 4.1 K.

Keywords

References

  1. M. Oh and S. Park, J. Korean Inst. Electr. Electron. Mater. Eng., 24, 14 (2011).
  2. S. Choi and W. Seo, J. Korean Inst. Electr. Electron. Mater. Eng., 24, 18 (2011).
  3. I. Terasaki, Y. Ishii, D. Tanaka, K. Takahata, and Y. Iguchi, Jpn. J. Appl. Phys., 40, L65 (2001). https://doi.org/10.1143/JJAP.40.L65
  4. T. Okuda, K. Nakanishi, S. Miyasaka and Y. Tokusa, Phys. Rev. B, 63, 113104 (2001). https://doi.org/10.1103/PhysRevB.63.113104
  5. M. Ohtaki, K. Araki and K. Yamamoto, J. Electron. Mater., 38, 1234 (2009). https://doi.org/10.1007/s11664-009-0816-1
  6. J. Androulakis, P. Migiakis and J. Giapintzakis, Appl. Phys. Lett., 84, 1099 (2004). https://doi.org/10.1063/1.1647686
  7. T. Yin, D. Liu, Y. Ou, F. Ma, S. Xie, J. F. Li, and J. Li, J. Phys. Chem. C, 114, 10061 (2010). https://doi.org/10.1021/jp1024872
  8. W. Xu, Y. Shi, and H. Hadim, Nanotechnology, 21, 395303 (2010). https://doi.org/10.1088/0957-4484/21/39/395303
  9. S. Kocyigit, A. Aytimur, E. Cinar, I. Uslu, and A. Akdemir, JOM, 66, 30 (2014). https://doi.org/10.1007/s11837-013-0822-x
  10. D. Lee, K. Cho, J. Choi, and S. Kim, Mater. Lett., 142, 250 (2015). https://doi.org/10.1016/j.matlet.2014.12.029
  11. J. Shi, L. Wang, and Y. Chen, Langmuir, 25, 6015 (2009). https://doi.org/10.1021/la900811k
  12. C. S. Sharma, A. Sharma, and M. Madou, Langmuir, 26, 2218 (2010). https://doi.org/10.1021/la904078r
  13. P. F. Jao, K. T. Kim, G.J.A. Kim, and Y. K. Yoon, J. Micromech. Microeng., 23, 114011 (2013). https://doi.org/10.1088/0960-1317/23/11/114011
  14. C. J. Thompson, G. G. Chase, A. L. Yarin, and D. H. Reneker, Polymer, 48, 6913 (2007). https://doi.org/10.1016/j.polymer.2007.09.017
  15. C. A. Hewitt, A. B. Kaiser, S. Roth, M. Craps, R. Czerw, and D. L. Carroll, Nano Lett., 12, 1307 (2012). https://doi.org/10.1021/nl203806q