DOI QR코드

DOI QR Code

Thermoelectric Characteristics of a Thermoelectric Module Consisting of Chalcogenide Nanoparticles and Glass Fibers

칼코제나이드 나노입자와 유리섬유를 이용하여 제작된 열전모듈의 발전 특성

  • Ryu, Hohyeon (Department of Electrical Ensgineering, Korea University) ;
  • Cho, Kyoungah (Department of Electrical Ensgineering, Korea University) ;
  • Choi, Jinyoung (Department of Electrical Ensgineering, Korea University) ;
  • Kim, Sangsig (Department of Electrical Ensgineering, Korea University)
  • 류호현 (고려대학교 전기전자공학과) ;
  • 조경아 (고려대학교 전기전자공학과) ;
  • 최진용 (고려대학교 전기전자공학과) ;
  • 김상식 (고려대학교 전기전자공학과)
  • Received : 2015.01.27
  • Accepted : 2015.03.24
  • Published : 2015.04.01

Abstract

In this study, we fabricated a thermoelectric module made of nanoparticles (NPs) and glass fibers investigated its thermoelectric characteristics. P-type HgTe and n-type HgSe NPs synthesized by colloidal method were used as thermoelectric materials and glass fibers were used as spacers between the hot and cold electrodes of the thermoelectric module. In the module, the average Seebeck coefficients of the HgTe and HgSe NPs were 1260 and $-628{\mu}V/K$, respectively. The p-n module generated about a voltage of 11.9 mV and showed a power density of $1.6{\times}10^{-5}{\mu}W/cm^2$ at a temperature difference of 7.5 K.

Keywords

References

  1. S. J. Kim, J. H. We, and B. J. Cho, Energy Environ. Sci., 7, 1959 (2014). https://doi.org/10.1039/c4ee00242c
  2. I. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 24, 10 (2011).
  3. M. Oh and S. Park, J. Korean Inst. Electr. Electron. Mater. Eng., 24, 14 (2011).
  4. J. Chen, T. Sun, D. Sim, H. Peng, H. Wang, H. Fan, and Q. Yan, Chem Mat., 22, 3086 (2010). https://doi.org/10.1021/cm9038297
  5. J. Martin, L. Wang, L. Chen, and G. S. Nolas, Phys. Rev. B, 79, 115311 (2009). https://doi.org/10.1103/PhysRevB.79.115311
  6. F. P. Incropera, Fundamentals of Heat and Mass Transfer (6th ed.) (John Wiley & Sons, New York, 1990) p. 936.
  7. B. Ray, II-VI Compounds, International Series of Monographs in the Science of the Solid State, 2 (Pergamon, New York, 1969) p. 224.
  8. J. Choi, K. Cho, and S. Kim, Nanotechnology, 24, 455402 (2013). https://doi.org/10.1088/0957-4484/24/45/455402
  9. Z. Dziuba and T. Zakrzewski, Phys. Stat. Sol., 7, 1019 (1964). https://doi.org/10.1002/pssb.19640070329
  10. M. D. Blue and P. W. Kruse, J. Phys. Chem. Solids, 23, 577 (1962). https://doi.org/10.1016/0022-3697(62)90516-4
  11. S. Choi, M Song, J Moon, W Seo, and K Jang, Jpn. J. Appl. Phys., 52, 10MB06 (2013). https://doi.org/10.7567/JJAP.52.10MB06
  12. F. E. H. Hassan, B. A. Shafaay, H. Meradji, S. Ghemid, H. Belkhir, and M. Korek, Phys. Scr., 84, 065601 (2011). https://doi.org/10.1088/0031-8949/84/06/065601
  13. G. Delaizir, J. Monnier, M. Soulier, R. Grodzki, B. Villeroy, J. Testard, and C. Godart, Sens. Actuator A-Phys., 174, 115 (2012). https://doi.org/10.1016/j.sna.2011.11.011