• Title/Summary/Keyword: 잠재적 디리클레 할당

Search Result 34, Processing Time 0.023 seconds

News Topic Extraction based on Word Similarity (단어 유사도를 이용한 뉴스 토픽 추출)

  • Jin, Dongxu;Lee, Soowon
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1138-1148
    • /
    • 2017
  • Topic extraction is a technology that automatically extracts a set of topics from a set of documents, and this has been a major research topic in the area of natural language processing. Representative topic extraction methods include Latent Dirichlet Allocation (LDA) and word clustering-based methods. However, there are problems with these methods, such as repeated topics and mixed topics. The problem of repeated topics is one in which a specific topic is extracted as several topics, while the problem of mixed topic is one in which several topics are mixed in a single extracted topic. To solve these problems, this study proposes a method to extract topics using an LDA that is robust against the problem of repeated topic, going through the steps of separating and merging the topics using the similarity between words to correct the extracted topics. As a result of the experiment, the proposed method showed better performance than the conventional LDA method.

Analysis of Research Trends in The Journal of Engineering Geology (1991-2024): Latent Dirichlet Allocation and Network Analysis ("지질공학"(1991-2024)의 연구동향 분석: 잠재 디리클레 할당 및 네트워크 분석)

  • Taeyong Kim;Hyerim Lee;Minjune Yang
    • The Journal of Engineering Geology
    • /
    • v.34 no.3
    • /
    • pp.429-445
    • /
    • 2024
  • The Journal of Engineering Geology (JEG), a leading academic journal in the field of engineering geology in South Korea, was first published in 1991 and has since been publishing academic papers and research findings. While several literature reviews have been undertaken on specific research areas in recent decades, comprehensive reviews focusing on JEG have been relatively limited. To address this gap, this study applied the latent Dirichlet allocation (LDA) model to analyze the main research topics and trends, and undertook network analysis to identify relationships between topics over different periods. Results for the LDA indicate seven key research topics categorized into three trends: Classic, Emerging and Stable topics. Classic topics include 'Geophysics' and 'Structural geology', which were major subjects in the early years, with their focus shifting to other areas over time. Emerging topics such as 'Hydrogeology' and 'Geohazards' have gained prominence in recent years. Stable topics including 'Geotechnical structures', 'Geomechanics', and 'Environmental geology' have maintained consistent research interest. Network analysis revealed that Structural geology was the central topic prior to 2008, while Geotechnical structures became the focal point of research after 2008, with a shift in research focus. The results of this study contribute to our understanding of research trends and the development of JEG, providing insights for the setting of future research directions.

An Analysis of the Social Phenomena and Perceptions of the Special Case of Military Service System in Korean Sports Field Using Big Data (빅데이터분석을 통한 체육계 병역특례제도의 사회적 현상 및 인식분석)

  • Lee, Hyun-Jeong;Han, Hae-Won
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.229-236
    • /
    • 2019
  • The purpose of this paper is to analyze social phenomena and perceptions by collecting and analyzing data on public opinion, views and trends related to special case of military service in the sports community through Big KINDS operated by the Korea Press Promotion Foundation. To this end, the related keywords were derived and visualized by implementing a LDA(latent dirichlet allocation) technique to derive problems found in social phenomena based on big data analysis. The topics derived include "re-lighting special case on military service," " military service corruption controversy," "special case of military service for athletes," "alternative military service system for artists " and "parliamentary inspection of the administration" This could be used as a basic data for identifying accurate information on social controversies related to special case of military service in the sports community and drawing up practical measures that are considered in line with the principle of just and equal burden.

Classifying and Characterizing the Types of Gentrified Commercial Districts Based on Sense of Place Using Big Data: Focusing on 14 Districts in Seoul (빅데이터를 활용한 젠트리피케이션 상권의 장소성 분류와 특성 분석 -서울시 14개 주요상권을 중심으로-)

  • Young-Jae Kim;In Kwon Park
    • Journal of the Korean Regional Science Association
    • /
    • v.39 no.1
    • /
    • pp.3-20
    • /
    • 2023
  • This study aims to categorize the 14 major gentrified commercial areas of Seoul and analyze their characteristics based on their sense of place. To achieve this, we conducted hierarchical cluster analysis using text data collected from Naver Blog. We divided the districts into two dimensions: "experience" and "feature" and analyzed their characteristics using LDA (Latent Dirichlet Allocation) of the text data and statistical data collected from Seoul Open Data Square. As a result, we classified the commercial districts of Seoul into 5 categories: 'theater district,' 'traditional cultural district,' 'female-beauty district,' 'exclusive restaurant and medical district,' and 'trend-leading district.' The findings of this study are expected to provide valuable insights for policy-makers to develop more efficient and suitable commercial policies.

The Trends of Eco-Friendly Textiles Using Big Data from Newspaper Articles (신문기사 빅데이터를 활용한 친환경 섬유의 추이에 관한 연구)

  • Nam Beom Cho;Choong Kwon Lee
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.95-107
    • /
    • 2024
  • The development of environmentally friendly products and services has become a trend, and the development and utilization of eco-friendly textiles with economic value is gaining attention as a new business model. Analyzing and identifying trends and developments in eco-friendly textiles can provide important information and insights for various stakeholders such as companies, governments, and consumers to help them achieve sustainable growth. For this study, we collected and analyzed data from newspaper articles mainly covering the textile and fashion sector from 2000 to June 2023. A total of 12,331 articles containing the keyword 'eco-friendly textiles' were collected, and after performing morphological analysis on the extracted data, Latent Dirichlet Allocation and Dynamic Topic Modeling analysis were performed to identify topics by year. The results of the study are expected to provide strategic guidance and insights for the sustainable development of the textile industry, thereby helping to promote the research, development, and commercialization of eco-friendly textiles.

Analysis of Educational Issues through Topic Modeling of National Petitions Text (국민청원글의 토픽 모델링을 통한 교육이슈 분석)

  • Shim, Jaekwoun
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.4
    • /
    • pp.633-640
    • /
    • 2021
  • Education related issues are social problems in which various groups and situations are intricately linked to each other. It is difficult to find issues by analyzing social phenomena related to education. Korean based text analysis can be analyzed in a quantitative. With the development of text analysis techniques, research results have been recently achieved, and it can be fully utilized to derive educational issues from text data in Korean. In this study, petition articles in the field of childcare/education were collected on the online-board of the Blue House National Petition website, and text analysis was used to derive issues in the education world. The analysis derived 6 topics through Latent Dirichlet Allocation(LDA) among topic modeling techniques. The association rules of major keywords were analyzed and visualized as graphs. In addition to deriving educational issues through the existing questionnaire, it can provide implications for future research directions and policies in that issues can be sufficiently discovered through text-based analysis methods.

How the Journal of the Korean Association for Science Education(JKASE) Changed for the Past 44 Years?: Topic Modeling Analysis Using Latent Dirichlet Allocation (한국과학교육학회지는 44년간 어떤 주제로 어떻게 변화했는가? -잠재 디리클레 할당(LDA)을 활용한 토픽모델링 분석-)

  • Chang, Jina;Na, Jiyeon
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.2
    • /
    • pp.185-200
    • /
    • 2022
  • The purpose of this study is to understand the trends and changes of the articles publishing the Journal of the Korean Association for Science Education(JKASE) in the past forty-four years. To this end, Latent Dirichlet Allocation(LDA) topic modeling analysis was performed on a total of 2,115 English abstracts of papers published in the JKASE from 1978 to 2021. As a result of LDA topic modeling analysis, a total of 23 topics were extracted, and each topic was presented with its related keywords and articles. Next, in order to examine how these topics have changed over time, we visualized the average weights of each topic for a 4-year cycle by using heatmaps. The topics that have risen or fallen were identified. The results of this study provide new insights into science education research in Korea in terms of revealing not only traditional research topics that have been consistently studied but also the topics that have changed in response to the development of educational philosophy or research methods, social or policy demands related to science education.

Unsupervised Motion Learning for Abnormal Behavior Detection in Visual Surveillance (영상감시시스템에서 움직임의 비교사학습을 통한 비정상행동탐지)

  • Jeong, Ha-Wook;Chang, Hyung-Jin;Choi, Jin-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.45-51
    • /
    • 2011
  • In this paper, we propose an unsupervised learning method for modeling motion trajectory patterns effectively. In our approach, observations of an object on a trajectory are treated as words in a document for latent dirichlet allocation algorithm which is used for clustering words on the topic in natural language process. This allows clustering topics (e.g. go straight, turn left, turn right) effectively in complex scenes, such as crossroads. After this procedure, we learn patterns of word sequences in each cluster using Baum-Welch algorithm used to find the unknown parameters in a hidden markov model. Evaluation of abnormality can be done using forward algorithm by comparing learned sequence and input sequence. Results of experiments show that modeling of semantic region is robust against noise in various scene.

An Analysis of Civil Complaints about Traffic Policing Using the LDA Model (토픽모델링을 활용한 교통경찰 민원 분석)

  • Lee, Sangyub
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.4
    • /
    • pp.57-70
    • /
    • 2021
  • This study aims to investigate the security demand about the traffic policing by analyzing civil complaints. Latent Dirichlet Allocation(LDA) was applied to extract key topics for 2,062 civil complaints data related to traffic policing from e-People. And additional analysis was made of reports of violations, which accounted for a high proportion. In this process, the consistency and convergence of keywords and representative documents were considered together. As a result of the analysis, complaints related to traffic police could be classified into 41 topics, including traffic safety facilities, passing through intersections(signals), provisional impoundment of vehicle plate, and personal mobility. It is necessary to strengthen crackdowns on violations at intersections and violations of motorcycles and take preemptive measures for the installation and operation of unmanned traffic control equipments, crosswalks, and traffic lights. In addition, it is necessary to publicize the recently amended laws a implemented policies, e-fine, procedure after crackdown.

Text Mining Analysis of News Articles Related to 'Space Hazard' ('우주 위험' 관련 뉴스 기사의 텍스트 마이닝 분석 연구)

  • Jo, Hoon;Sohn, Jungjoo
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.224-235
    • /
    • 2022
  • This study aimed to confirm the status of media reports on space hazards using topic modeling analysis of media articles that are related to space hazards for the past 12 years. Therefore, Latent Dirichlet Allocation (LDA) analysis was performed by collecting over 1200 space hazards articles between 2010 and 2021 on solar storm, artificial space objects, and natural space objects from BIGKins news platform. The articles related to solar storm focused on three topics: the effect of solar explosion on satellites; effect of solar explosion on radio communication in Korea, centered on the Korean Space Weather Center; and relationship between aircrew and space radiation. The articles related to artificial space objects focused on three topics: the threat of space garbage to satellite and space stations and the transition of useful objects into space junk; the relationship between space garbage and humanity as shown in movies; and the effort of developed countries for tracking, monitoring, and disposing of space garbage. The articles related to natural space objects focused on two topics: International Space Agency's tracking and monitoring of near-Earth asteroids and the countermeasures of collisions, and the evolution and extinction of dinosaurs and mammals, with a focus on the collisions of asteroids or comets. Therefore, this study confirmed that domestic media play a role in conveying dangers of space hazards and arousing the attention of public using a total of eight themes in various fields such as society and culture, and derived education method and policy on space hazards.