Acknowledgement
Supported by : 한국연구재단
References
- Wikipedia, topic model, http://en.wikipedia.org/wiki/Topic_model, 2015.
- Landauer, T. K., Foltz, P. W., & Laham, D., An introduction to latent semantic analysis, Discourse processes, 25(2-3), pp. 259-284, 1988.
- Blei, D. M., Ng, A. Y., & Jordan, M. I., Latent Dirichlet Allocation, The Journal of Machine Learning Research, 3, pp. 993-1022, 2003.
- Wang, Y., Zhao, X., Sun, Z., Yan, H., Wang, L., Jin, Z., ... & Zeng, J., Peacock: Learning long-tail topic features for industrial applications. arXiv preprint arXiv:1405.4402, 2014.
- Noh, J., Lee, S., Extracting and Evaluating Topics by Region, Multimedia Tools and Application, 75(20), 2016.
- Wikipedia, LDA, https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation, 2015.
- Dumais, S. T., Latent semantic analysis, Annual review of information science and technology, 38(1), pp. 188-230, 2004. https://doi.org/10.1002/aris.1440380105
- Hofmann, T., Probabilistic latent semantic analysis, Proc. of the Fifteenth conference on Uncertainty in artificial intelligence, pp. 289-296, Morgan Kaufmann, 1999.
- Hofmann, T., Probabilistic latent semantic indexing. Proc. of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 50-57, ACM, 1999.
- Kazama, J. I., De Saeger, S., Kuroda, K., Murata, M., & Torisawa, K., A Bayesian method for robust estimation of distributional similarities, Proc. of the 48th Annual Meeting of the Association for Computational Linguistics, pp.247-256, Association for Computational Linguistics, 2010.
- Wikipedia, perplexity, [Online]. Available: https://en.wikipedia.org/wiki/Perplexity, 2015.
- [Online]. Available: http://media.daum.net/netizen/hotlivenation/
- [Online]. Available: http://nlp.stanford.edu/software/tmt/tmt-0.4/
- Wikipedia, Expectation-maximization algorithm, [Online]. Available: https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm