• 제목/요약/키워드: 잠재적 디리클레 할당

검색결과 34건 처리시간 0.025초

단어 유사도를 이용한 뉴스 토픽 추출 (News Topic Extraction based on Word Similarity)

  • 김동욱;이수원
    • 정보과학회 논문지
    • /
    • 제44권11호
    • /
    • pp.1138-1148
    • /
    • 2017
  • 토픽 추출은 문서 집합으로부터 그 문서 집합을 대표하는 토픽을 자동 추출하는 기술이며 자연어 처리의 중요한 연구 분야이다. 대표적인 토픽 추출 방법으로는 잠재 디리클레 할당과 단어 군집화 기반 토픽 추출방법이 있다. 그러나 이러한 방법의 문제점으로는 토픽 중복 문제와 토픽 혼재 문제가 있다. 토픽 중복 문제는 특정 토픽이 여러 개의 토픽으로 추출되는 문제이며, 토픽 혼재 문제는 추출된 하나의 토픽 내에 여러 토픽이 혼재되어 있는 문제이다. 이러한 문제를 해결하기 위하여 본 연구에서는 토픽 중복 문제에 대해 강건한 잠재 디리클레 할당으로 토픽을 추출하고 단어 간 유사도를 이용하여 토픽 분리 및 토픽 병합의 단계를 거쳐 최종적으로 토픽을 보정하는 방법을 제안한다. 실험 결과 제안 방법이 잠재 디리클레 할당 방법에 비해 좋은 성능을 보였다.

"지질공학"(1991-2024)의 연구동향 분석: 잠재 디리클레 할당 및 네트워크 분석 (Analysis of Research Trends in The Journal of Engineering Geology (1991-2024): Latent Dirichlet Allocation and Network Analysis)

  • 김태용;이혜림;양민준
    • 지질공학
    • /
    • 제34권3호
    • /
    • pp.429-445
    • /
    • 2024
  • 국내 지질공학 분야를 대표하는 학술지인 "지질공학"은 1991년에 창간되어 현재까지 지속적으로 학술 활동 및 다양한 연구 논문을 발표하고 있다. 지난 수십 년 동안 많은 연구자들이 특정 분야를 주제로 한 문헌 고찰 연구를 수행해 왔으나, 학술지 "지질공학"을 대상으로 수행한 문헌고찰 연구는 미비한 실정이다. 따라서, 본 연구에서는 텍스트 마이닝 기법 중 하나인 잠재 디리클레 할당(latent Dirichlet allocation, LDA) 모델을 적용하여 연구 주제 분류 및 연구동향을 분석하였으며, 네트워크 분석을 통해 시대별 주제 간의 연관성을 파악하였다. 분석 결과 총 7개의 연구 주제로 분류되었으며, 3가지 연구동향(Classic topic, Emerging topic, Stable topic)으로 나누어 해석하였다. Classic topic에는 "지구물리학"과 "구조지질학"으로 분석되었으며, 초기에는 주요 논의 주제였으나 시간이 지남에 따라 연구 비중이 감소하였다. Emerging topic은 최근 연구가 활발한 "수리지질학"과 "지질재해"로 분석되었으며, 'Stable topic'은 지속적으로 연구 비중이 유지된 "지반 구조물", "지반 역학", "환경지질학"으로 나타났다. 네트워크 분석 결과, 2008년 이전에는 "구조지질학"이 중심 주제였으나, 2008년 이후 "지반 구조물"분야로 중심 주제가 이동하며 연구의 초점이 변화하였다. 본 연구는 학술지 "지질공학"의 연구 흐름과 발전 과정을 이해하고, 향후 연구 방향을 설정하는 데 중요한 자료를 제공하였음에 의의가 있다.

빅데이터분석을 통한 체육계 병역특례제도의 사회적 현상 및 인식분석 (An Analysis of the Social Phenomena and Perceptions of the Special Case of Military Service System in Korean Sports Field Using Big Data)

  • 이현정;한혜원
    • 한국융합학회논문지
    • /
    • 제10권4호
    • /
    • pp.229-236
    • /
    • 2019
  • 본 논문은 한국언론진흥재단이 운영하는 빅카인즈(Big KINDS)를 통하여 2018년 1월1일부터 12월 31일까지 언론 보도자료를 중십으로 체육계 병역특례와 관련된 여론, 관점과 흐름에 대한 자료를 수집 분석하여 사회적 현상 및 인식을 분석하려는 데에 그 목적이 있다. 이를 위하여 빅데이터 분석을 기반으로 사회적 현상에서 속에서 발견되는 문제점을 도출하기 위해 관련 키워드를 잠재 디리클레 할당 기법을 실행하여 토픽을 도출하고 시각화 하였다. 도출된 토픽은 '병역특례 재조명', '병역비리 논란', '체육분야 병역특례', '예술분야 대체복무 제도', '국정감사'의 5개이다. 이는 체육계 병역특혜와 관련된 사회적 논란에 대한 정확한 정보를 파악하여 정의롭고 평등부담원칙에 부합되면서도 스포츠선수의 특성이 고려된 현실적 방안을 마련할 기초자료로 사용될 수 있을 것이다.

빅데이터를 활용한 젠트리피케이션 상권의 장소성 분류와 특성 분석 -서울시 14개 주요상권을 중심으로- (Classifying and Characterizing the Types of Gentrified Commercial Districts Based on Sense of Place Using Big Data: Focusing on 14 Districts in Seoul)

  • 김영재;박인권
    • 지역연구
    • /
    • 제39권1호
    • /
    • pp.3-20
    • /
    • 2023
  • 본 연구는 젠트리피케이션이 발생한 상권의 장소성을 파악하여 상권의 확장과 쇠퇴 속에서 장소성의 구체적인 모습을 유형화하고 유형별 특징을 분석하는 것을 목적으로 한다. 소셜 미디어를 통해 수집된 대용량 문서를 활용하여 위계적 군집분석을 시행하였으며, 지역별 장소성을 인지적 차원의 <경험>과 실재적 차원의 <상권특성>으로 구분하여 상권 군집별 특성을 확인하였다. 이를 위해 잠재 디리클레 할당(Latent Dirichlet Allocation: LDA) 토픽모델링 기법과 서울시 우리마을가게 상권분석서비스를 통해 수집된 상권별 매출액 통계자료를 활용하였다. 분석 결과 서울시 젠트리피케이션 상권은 고유한 특성을 가진 '연극 상권', '전통문화 상권', '여성 미용 상권', '고급음식점 및 의료서비스 상권', '트렌디 상권'으로 분류되는 것으로 나타났다. 연구의 결과를 바탕으로 보다 효율적이고 지역별 특색에 맞는 상업정책들을 시행할 수 있을 것으로 기대한다.

신문기사 빅데이터를 활용한 친환경 섬유의 추이에 관한 연구 (The Trends of Eco-Friendly Textiles Using Big Data from Newspaper Articles)

  • 조남범;이충권
    • 스마트미디어저널
    • /
    • 제13권2호
    • /
    • pp.95-107
    • /
    • 2024
  • 환경에 친화적인 제품과 서비스의 개발은 시대적인 트렌드가 되었고, 경제적 가치를 가진 친환경 섬유의 개발과 활용은 새로운 비즈니스 모델로서 주목받고 있다. 친환경 섬유에 대한 동향을 분석하고 추이를 파악하는 것은 기업, 정부, 소비자 등 다양한 이해관계자들에게 중요한 정보와 인사이트를 제공하여 지속가능한 성장에 도움을 줄 수 있다. 이에 본 연구는 2000년부터 2023년 6월까지 섬유패션 분야를 주로 다루는 신문의 기사데이터를 수집하여 분석을 진행하였다. '친환경 섬유'라는 키워드가 포함된 기사 총 12,331건을 수집하였고, 추출된 데이터에서 형태소 분석을 진행 후 연도별 토픽을 알아보기 위해 잠재 디리클레 할당과 동적 토픽 모델링 분석을 수행하였다. 연구 결과는 섬유산업의 지속 가능한 발전을 위한 전략적 지침과 인사이트를 제공함으로써, 친환경 섬유의 연구와 개발, 그리고 상용화를 촉진함에 있어서 도움이 될 것으로 기대된다.

국민청원글의 토픽 모델링을 통한 교육이슈 분석 (Analysis of Educational Issues through Topic Modeling of National Petitions Text)

  • 심재권
    • 정보교육학회논문지
    • /
    • 제25권4호
    • /
    • pp.633-640
    • /
    • 2021
  • 교육과 관련된 이슈는 다양한 집단과 상황이 서로 복잡하게 연계된 사회문제로 교육과 관련된 현상을 분석하여 이슈와 문제를 구체적으로 발견하는 것은 쉽지 않은 일이다. 한국어 기반 텍스트 분석은 정량적인 형태로 분석이 가능하고, 텍스트 분석기법의 발전에 따라 연구적인 성과를 내고 있어 교육과 관련된 이슈를 한국어 텍스트로 된 데이터에서 도출하는데 충분히 활용할 수 있다. 본 연구는 청와대 국민청원 홈페이지 게시판의 육아/교육 분야의 청원글을 수집하고 텍스트 분석방법을 활용하여 교육계의 이슈와 문제를 도출하고자 하였다. 분석은 토픽 모델링 기법 중 잠재 디리클레 할당(LDA)을 통해 6개 토픽을 도출하였고, 주요 키워드의 연관규칙을 분석하여 그래프로 시각화하였다. 기존의 설문을 통한 교육의 이슈를 도출하는 방법 이외에 추가로 텍스트 기반의 분석방법을 통해 이슈를 충분히 발견할 수 있다는 점에서 향후 연구의 방향과 정책에 시사점을 제공할 수 있다.

한국과학교육학회지는 44년간 어떤 주제로 어떻게 변화했는가? -잠재 디리클레 할당(LDA)을 활용한 토픽모델링 분석- (How the Journal of the Korean Association for Science Education(JKASE) Changed for the Past 44 Years?: Topic Modeling Analysis Using Latent Dirichlet Allocation)

  • 장진아;나지연
    • 한국과학교육학회지
    • /
    • 제42권2호
    • /
    • pp.185-200
    • /
    • 2022
  • 이 연구에서는 LDA 기반의 토픽모델링 분석을 통해 한국과학교육학회지에 게재된 연구 논문들이 어떤 주제로 어떻게 변화했는지 탐색하였다. 이를 위해, 1978년부터 2021년 5월까지 한국과학교육학회지에 게재된 논문들의 영문초록 총 2,115개에 대한 LDA 기반 토픽모델링분석을 실시하였다. 분석 결과, 총 23개의 토픽을 추출하였으며 각 토픽들을 관련된 키워드 및 세부 연구주제들과 함께 제시하였다. 다음으로, 시간에 따른 토픽들의 변화 추이를 살펴보기 위해, 4년 주기에 대한 각 토픽들의 평균 비중값의 변화를 히트맵으로 시각화하였다. 이를 통해, 시간이 지남에 따라 상승해온 주제와 하락해온 주제들을 밝혔다. 이 연구의 결과들은 꾸준히 연구되어온 전통적인 연구 주제들, 교육 철학이나 연구방법의 변화, 사회나 정책적 요구에 따라 달라져온 연구 주제들을 드러냄으로써 한국의 과학교육연구에 새로운 통찰을 제공할 것으로 기대된다.

영상감시시스템에서 움직임의 비교사학습을 통한 비정상행동탐지 (Unsupervised Motion Learning for Abnormal Behavior Detection in Visual Surveillance)

  • 정하욱;장형진;최진영
    • 전자공학회논문지SC
    • /
    • 제48권5호
    • /
    • pp.45-51
    • /
    • 2011
  • 본 논문에서는 비교사학습법을 통해 영상의 방대한 정보를 효율적으로 모델링 하는 방법을 제안하고자 한다. 여기서 이동궤적들은 자연어 처리에 사용되는 알고리즘인 잠재 디리클레 할당 모형(Latent Dirichlet Allocation)에 의해 직진, 좌회전, 우회전등 각 상황 별로 주제에 따라 그 영역을 효과적으로 분류할 수 있다. LDA를 이용해 주제별로 의미 있는 영역을 분류한 후, 각 주제별로 분류된 궤적을 관측열로 보고 은닉 마르코프 모델(Hidden Markov Model)의 바움-웰치 알고리즘을 사용하여 학습한다. 전향 알고리즘을 사용하여 입력된 행동과 학습된 행동을 비교함으로써 영상내의 행동이 정상인지 비정상인지를 효과적으로 판단할 수 있다. 실험결과 다양한 영상에 대해 의미있는 주제별로 영역이 잘 분류되며 추적에러로 인한 궤적의 노이즈에도 강인하게 물체의 무단횡단, 신호위반과 같은 상황을 효과적으로 탐지하는 것을 확인할 수 있다.

토픽모델링을 활용한 교통경찰 민원 분석 (An Analysis of Civil Complaints about Traffic Policing Using the LDA Model)

  • 이상엽
    • 한국ITS학회 논문지
    • /
    • 제20권4호
    • /
    • pp.57-70
    • /
    • 2021
  • 본 연구는 민원데이터를 분석함으로써 교통경찰에 대한 국민의 치안 수요를 탐색하고자 하였다. 이를 위해 교통경찰 관련 국민신문고 민원데이터 2,062건을 대상으로, 토픽모델링 방법 중 하나인 잠재 디리클레 할당(Latent Dirichlet Allocation)을 통해 주요 토픽을 추출하고 높은 비중을 차지한 위반신고에 대해 추가분석을 시도하였다. 이 과정에서 키워드와 대표문서의 일관성과 합치성을 함께 고려하였다. 분석 결과 교통경찰 관련 민원은 시설개선, 신호에 따른 교차로통행방법, 번호판 영치, 개인형 이동장치 등 41개의 토픽으로 분류할 수 있었다. 교차로내 위반과 이륜자동차의 위반에 대한 단속을 강화하고 무인교통단속장비, 횡단보도, 신호등의 설치 및 운영에 대한 선제적인 조치, 최근 개정된 법령과 시행된 정책, 경찰교통민원 사이트, 단속 사후 절차에 대한 더욱 활발한 홍보가 필요한 것으로 판단된다.

'우주 위험' 관련 뉴스 기사의 텍스트 마이닝 분석 연구 (Text Mining Analysis of News Articles Related to 'Space Hazard')

  • 조훈;손정주
    • 한국지구과학회지
    • /
    • 제43권1호
    • /
    • pp.224-235
    • /
    • 2022
  • 본 연구는 지난 12년간의 우주위험 관련 언론기사의 토픽모델링 분석을 통해 우주위험별 언론 보도 현황을 알아보기 위한 목적으로 수행되었다. 빅카인즈(BIGKinds)의 뉴스 플랫폼에서 2010년부터 2021년까지의 태양폭풍, 인공우주물체, 자연우주물체에 대한 우주위험 기사를 각각 1200여건 이상 수집하였으며, 키워드 분석, 잠재적 디리클레 할당모형(LDA) 분석을 수행하였다. 그 결과 태양폭풍 관련 기사는 3개의 토픽인 태양폭발이 인공위성에 미치는 영향, 우주전파센터를 중심으로 태양폭발이 우리나라 전파 통신에 미치는 영향, 항공종사자와 우주방사선의 관계로 요약되었다. 인공우주물체 관련 기사의 경우 3개의 토픽으로 인공위성과 우주정거장이 우주쓰레기로부터 위협을 받거나 그 자체가 우주쓰레기가 될 수 있다는 토픽, 영화를 통한 우주쓰레기와 인류의 관계에 대한 토픽, 우주쓰레기 추적·감시 및 처리를 위한 우주강국들의 노력이라는 토픽으로 요약되었다. 자연우주물체 관련 기사는 2개의 토픽으로 국제 우주기관의 근지구소행성에 대한 추적·감시와 충돌 대책과 소행성과 혜성 충돌을 중심으로 공룡과 포유류의 진화 및 멸종 원인으로 요약되었다. 이로부터 2010년부터 현재까지 국내 언론은 우주위험을 사회, 문화 등 다양한 영역에서 총 8개의 주제로 대중들에게 그 위험성과 경각심을 전하는 역할을 하고 있음을 확인하였으며, 이러한 결과를 기반으로 우주위험에 대한 교육방법과 교육정책의 필요성을 제언하였다.