인간은 정보전달을 위하여 언어 이외에 동작, 표정과 같은 비언어적인 수단을 이용한다. 이러한 비언어적인 수단을 정확히 분석 할 수 있다면 인간과 컴퓨터간의 자연스럽고 지적인 인터페이스를 구축할 수 있게 된다. 본 논문은 별도의 센서를 부착하지 않은 단일 카메라 환경에서 손 형상을 입력정보로 사용하여 손 영역만을 분할한 후 자기 조직화 특징 지도(SOFM: Self Organized Feature Map) 신경망 알고리즘을 이용하여 손 형상을 인식함으로서 수화인식을 위한 보다 안정적이며 강인한 인식 시스템을 구현하고자 한다. 제안 방법으로는 피부색 정보를 이용하여 배경으로부터 손 영역만을 추출한 후 추출된 손 영역의 형상을 인식한다(전처리과정으로 모델이미지의 사이즈와 압축 및 컬러에 대한 정보를 정규화 시켰다). 또한 인식 효율을 높이기 위해 SOFM 신경망 알고리즘을 적용함으로서 보다 안정적으로 손 형상을 인식할 수 있게 되었으며, 손 형상 인식률에 대한 안전성과 정확성을 향상시킬 수 있었다. 그리고 인식된 손 형상의 의미를 텍스트로 보여줌으로서 사용자의 의사를 정확하게 전달할 수 있다.
본 논문에서는 웹 이미지의 분류 효과를 높이기 위해 이미지 자체에서 추출된 저수준의 비주얼 특징뿐만 아니라 이미지와 관련된 텍스트 정보로부터 나온 고수준 시맨틱 특징들을 이용하는 분류 방법을 제안한다. 이 고수준의 텍스트 특징들은 이미지 URL, 파일명, 페이지 타이틀, 하이퍼링크 및 이미지 주변 텍스트로부터 얻어진다. 분류 엔진으로는 Kohonen의 SOM(Self Organizing Map)을 사용한다. 고수준의 텍스트 특징들과 저수준의 비주얼 특징들을 동시에 사용하는 SOM 기반의 이미지 분류에서는 10개의 카테고리로부터 수집된 200개의 테스트 이미지들이 사용되었다. 분류 성능을 평가하기 위해 간단하면서도 새로운 두 가지 척도, 즉 동일 카테고리 이미지들의 산포 정도와 집적 정도를 나타내는 각각의 척도를 정의하고 사용하였다. 실험결과, SOM기반의 웹 이미지 분류에서는 고수준의 텍스트 특징들이 보다 유용한 것임이 밝혀졌다.
본 논문에서는 신경망 SOM학습을 이용하여 피험자의 각성수준을 높은각성과 낮은각성으로 자동인식하는 것을 제안한다. 각성수준의 자동인식 단계는 세 단계로 구성된다 첫 번째는 ECG 측정 및 분석단계로 슈팅게임을 플레이하는 피험자를 ECG로 측정하고, SOM 학습을 하기 위해 특징을 추출한다. 두 번째는 SOM 학습 단계로 특징이 추출된 입력벡터들을 학습한다. 마지막으로 각성인식 단계는 SOM 학습이 완료된 후에 새로운 입력벡터가 들어왔을 때, 피험자의 각성수준을 인식한다. 실험결과는 각성수준의 SOM 학습결과와 새로운 입력벡터가 들어왔을 때 각성수준의 인식결과, 그리고 각성수준을 수치와 그래프로 보여준다. 마지막으로 SOM의 평가는 기존연구의 감성평가 결과와 SOM의 자동인식 결과를 순차적으로 비교하여 평균 86%로 분석되었다. 본 연구를 통해서 SOM을 이용하여 피험자마다 다른 각성수준을 자동인식 할 수 있었다.
대설은 우리나라의 법적 자연재해 중 하나이다. 최근 기상현상에 의한 사회경제적 영향력을 함께 예보하는 영향예보가 부각되고 있으며, 이를 위해서는 먼저 각 지역의 기후적 특징을 분석할 필요가 있다. 본 연구에서는 영향예보의 기반마련을 위해 자기조직화지도를 활용하여 적설동질지역을 구분하여 지역별 적설 특징을 분석했다. 연구결과 적설동질지역은 7개 군집으로 나타났으며, 강설량 및 관측일수, 최대강설량을 이용하여 각 그룹의 특징을 구분했다. 대관령, 강릉시, 정읍시는 강설량이 많은 지역으로, 경상도는 강설량이 적은 지역으로 구분되었다. 선행연구와 비교결과 대표적인 지역이 잘 구분되었으나 강설의 특징은 차이가 있는 것으로 나타났다. 본 연구의 결과는 각 지역의 영향예보를 위한 정책결정에 기초자료로 활용될 수 있다.
하천 합류부는 두 개의 수체가 만나 전단층을 이루고 전단층을 따라 강한 혼합양상을 보이는 특징이 있다. 자연하천에서 합류하는 대비되는 두 하천의 색은 전단층을 따라 구분될 수 있는데, 이는 위성 또는 무인항공체를 이용해 촬영된 항공영상을 통해 쉽게 관측할 수 있다. 본 연구에서는 취득 비용이 저렴한 RGB 항공 영상을 이용해 합류부에서 발생하는 전단층을 추출하고 전단층 주변의 기하학적 특성을 정량적으로 산정하는 방법을 제시한다. 본 방법은 네 단계로 구분된다. 첫 번째로, 합류부 흐름에서 전단층 추출을 위해 가우시안 혼합 모형을 바탕으로 한 영상 분할을 수행하여 본류와 지류가 포함된 픽셀을 추출해낸다. 다음으로 추출된 하천 수역에 자기조직화지도를 적용해 하천의유선을 1차원 곡선으로 단순화한다. 추출된 수체 영역과 1차원 곡선들을 이용해 본류와 지류의 수역을 이미지상 직교좌표계에서 곡선좌표계로 투영한 뒤, 마지막으로 전단층의 기하학적 특성을 산정한다. 결과적으로 개발된 전단층 추출법을 경상남도의 낙동강과 남강의 합류부가 촬영된 위성 영상에 적용하여 자연하천 합류부의 기하학적 특성인 합류각, 합류하는 두 하천의 상하류 하천 폭, 전단층의 길이, 그리고 전단층의 최대 두께를 각각 정량적으로 추출하는 데에 성공하였다.
본 논문에서는 경쟁학습 신경회로망의 디지탈 칩 구현에서 뉴런의 집적도를 향상시키기 위해 하드웨어 구현이 용이한 새로운 신경회로망 모델로서 일정 적응이득과 이진 강화함수를 가진 여러 가지 경쟁학습 신경회로망 모델들을 제안하고, 그 중 안정성과 분류성능이 가장 우수한 일정 적응이득과 이진 강화함수를 지닌 자기조직화 형상지도(Self-Organizing Feature Map)신경회로망의 FPGA위에서의 하드웨어 구현에 대해서 논한다. 원래의 SOFM 알고리즘에서 적응이득이 시간 종속형인데 반하여, 본 논문에서 하드웨어로 구현한 알고리즘에서는 적응이득이 일정인 값으로 고정되며 이로 인한 성능저하를 보상하기 위하여 이진 강화함수를 부가한다. 제안한 알고리즘은 복잡한 곱셈 연산을 필요로 하지 않으므로 하드웨어 구현이 용이하다는 특징이있다. 1개의 덧셈/뺄셈기와 2개의 덧셈기로 구성된 단위 뉴런은 형태가 단순하면서 반복적이므로 하나의 FPGA 위에서도 다수의 뉴런을 구현 할수 있으며 비교적 소수의 제어신호로서 이들을 모두 제어 가능할 수 있도록 설계하였다.실험 결과 각 구서부분은 모두 이상 없이 올바로동작하였으며 각 부분이 모두 종합된 전체 시스템도 이상 없이 동작함을 알 수 있었다.
본 논문에서는 underutilization 문제를 해결한 퍼지 신경회로망 모델을 제시한다. 이 퍼지 신경 회로망은 ART-1 신경회로망과 유사한 제어 구조를 가지고 있어 유연성이 있으면서도 안정성이 있다. 또한 연결강도의 초기화가 필요 없고 ART-1 신경회로망에 비하여 잡음에 민감하지 않다. 이 퍼지 신경회로망의 학습법칙은 코호넨의 학습법칙을 변형하고 퍼지화 하였으며 누설 경쟁학습의 퍼지화와 조건 확률의 퍼지화에 기반을 두고 있다. 출력 뉴런 중에서 승자를 정한 후에 행해지는 점검 테스트에서는 유사척도로 상대적 거리를 사용하였다. 이 상대적 거리는 유클리디안 거리와 함께 데이터와 클러스터들의 대푯값들 간의 상대적인 위치를 고려한 것이다. 본 논문에서 제안한 퍼지 신경회로망과 코호넨 자기 조직화 특징 지도의 성능을 비교하기 위하여 널리 사용되어온 IRIS 데이터와 가우시안 분포 데이터를 사용하였다.
고객의 니즈가 시시각각 변화하는 경영환경에서 획일화된 매장관리 방법으로 매장의 수익성을 증대시키기에는 한계가 있다. 따라서 고객의 선호 변화를 예측하여 각 매장에 적절한 상품을 추천할 필요가 있다. 본 연구에서는 판매 데이터 분석을 통해 시간 순서를 고려한 상품 추천 및 매장관리 방법을 제안한다. 즉 자기조직화지도(Self Organizing Map) 알고리즘을 이용하여 매장의 판매 프로파일을 군집화하고, 매장 궤적의 예측을 통해 목표 매장을 관리하는 방법을 제시한다. 본 연구의 방법론을 검증하기 위해 (주)더페이스샵 판매데이터를 적용하여 평가하였으며, 평가결과 제시한 방법론은 화장품처럼 유행에 민감하고 라이프사이클이 짧은 특징을 지닌 상품을 판매하는 매장의 수익성 증대에 기여할 수 있을 것으로 기대된다.
본 논문은 얼굴 형상 인식을 위한 보다 안정적이며 조명 변화와 회전에 강인하게 얼굴 영역을 검출하며, 계산의 효율성과 검출 성능을 동시에 만족시키는 강인한 검출 알고리즘에 대해 제안한다. 제안한 알고리즘은 단일 카메라 환경에서 얼굴 형상을 입력정보로 사용하여 전처리 과정을 거쳐 얼굴 영역만을 분할한 후 자기 조직화 특징 지도(SOFM) 알고리즘을 이용하여 얼굴 형상을 인식하게 된다. 그러나 조명 변화에 민감하고 자유도가 큰 얼굴 영역을 정확히 인식하기란 쉽지 않으며 오차 범위도 크기 때문에 본 논문에서는 인식률을 높이기 위해 각각의 얼굴 형상에 대한 회전 정보를 데이터베이스화 한 후 주성분 분석을 적용하여 군집화 함으로서 인식오차를 줄였다. 또한 차원 축소로 인해 많은 계산량이 요구되지 않기 때문에 실시간 인식 시간도 줄일 수 있었다.
본 연구에서는 비행슈팅게임을 플레이하는 피험자의 긴장 또는 이완상태를 자동으로 인식하는 시스템을 제안한다. 기존 연구에서는 피험자에게 자극원을 제시하여 나타난 변화 값을 비교하기 때문에 자동으로 분류하는데 한계가 있었다. 본 연구에서는 피험자의 상태 변화를 자동으로 분류하여 인식할 수 있도록 비지도학습의 SOM을 적용한다. 긴장과 이완상태의 자동인식을 위한 SOM의 적용은 두 가지 단계로 구성된다. 첫 번째 단계는 ECG측정 및 분석으로 피험자에게 게임을 플레이하게 한 후 ECG를 측정하여 HRV 분석으로 특징벡터를 추출한다. 두 번째 단계는 SOM 학습 및 인식으로 특징이 추출된 심박신호의 입력벡터들을 SOM으로 학습하여 피험자의 긴장과 이완상태를 분류하여 인식 한다. 실험 결과는 세 가지로 나누어진다. 첫 번째, HRV의 주파수변화와 두 번째 심박신호의 SOM 학습결과를 나타냈다. 세 번째 단계는 SOM학습의 성능을 알기 위해서 매칭율을 분석했다. HRV의 주파수분석의 LF/HF 비율을 1.5 기준으로 SOM의 승자뉴런 거리와 매칭한 결과 평균 72%의 매칭율을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.