• Title/Summary/Keyword: 자기벡터포텐셜

Search Result 9, Processing Time 0.026 seconds

Characteristic Analysis of Eddy Current Testing According to the finite Element formulations (와전류탐상의 3차원 유한요소 정식화에 따른 특성 분석)

  • Lee, Hyang-Beom
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.384-390
    • /
    • 2005
  • In the numerical analysis of En (eddy current testing) using 3-dimensional FEM (finite element method), MVP (magnetic vector potential) and electric scalar potential are used as variables in conductor region. Three dimensional modeling makes number of unknowns increase, and the degree of freedom of variables also makes number of unknowns increase. Because of this reason, modified UP is used to reduce the number of unknowns. Gauge condition is enforced artificially on existing FEM formulations to insure the uniqueness of MVP. So in this paper the effects of these FEM formulation procedures on ECT are investigated and the appropriate FEM formulation is suggested for accurate ECT simulation.

Electromagnetic Force Calculation Using Magnetic Vector Potentials in 3-D Problems (자기벡터포텐셜을 이용한 3차원 전자력 계산)

  • 양재진;이복용;이기식
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.2
    • /
    • pp.106-111
    • /
    • 1996
  • Electric machines such as motors which have rmving parts are designed for producing mechanical force or torque. The accurate calculations of electromagnetic force and torque are important in the design these machines. Electromagnetic force calculation method using the results of Finite Element Method(FEM) has been presented variously in 2-D problems. Typically the Maxwell's Stress Tensor method and the method of virtual work are used. The former calculates forces by integrating the surface force densities which can be expressed in terms of Maxwell Stress Tensor(MST), and the latter by differentiating the electromagnetic energy with respect to the virtual dis¬placement of rigid bodies of interest. In the problems including current source, magnetic vector potentials(MVP) have rmstly been used as unknown variables for field analysis by a numerical method; e. g. FEM. This paper, thus, introduces the two both methods using MVP in 3-D case. To verify the usefulness of presented methods, a solenoid model is chosen and analyzed by 3-D and axisymmetric FEM. It is found that the force calculation results are in good agreement for several mesh schemes.

  • PDF

Optimization of the Coil Head of Metal Detectors Using a Magnetic Vector Potential Approach (자기 벡터 포텐셜 해석을 이용한 금속 검출기 코일 헤드의 검출 성능 최적화)

  • Oh, Jun-Seok;Eun, Chang-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.5
    • /
    • pp.38-43
    • /
    • 2009
  • We derive an equation that predicts the induced voltage across the receiving terminals of the three-coil head of a metal detector using a magnetic vector potential approach. We also derive an equation that relates the change of the impedance of the transmitting coil to the properties of the metal. We utilize the results to obtain the optimum spacing between the driving and the receiving coils at which the maximum induced voltage is attained. Further, we determine the position of the metallic object where the voltage reaches its peak. We verify our work by comparing the results with those of a previous work.

A Study on the finite Element Analysis of Eddy Current Distributions using Current Vector Potential (전류 벡터 포텐셜을 이용한 와류분포의 유한요소 해석에 관한 연구)

  • 임달호;김민수;신흥교
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.12
    • /
    • pp.839-846
    • /
    • 1988
  • If we use the 2-dimensional analyzing method with the magnetic vector potential for the analysis of eddy current distribution in electric machinery, we can obtain the magnitude of eddy current but can't have the characteristic of eddy current distribution. For the settlement of this problem, we have induced the governing equation with the current vector potential and attemptted 2-dimensional analysis of eddy current distribution by finite element method. And the time domain weighted residual method is used in treatment of time differential term and we have developed the algorithm by it. And then, we analyze eddy current distributions of analytic model and aluminium disk in singlephase watt hour meter. Consequently we have verified the propriety and utility of above mentioned method.

Calculation of Resistance of Squirrel Cage Induction Motor End Ring using 3-D Finite Element Method (3차원 유한요소법을 이용한 농형유도전동기 단락환의 저항계산)

  • 박민우;이복용;이기석
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.2
    • /
    • pp.71-77
    • /
    • 1996
  • The end-ring may contribute a significant influence to the performance of machine. The induced currents flow through the bars of a cage rotor and complete their closed paths by passing around the end-ring. This dissertation is to describe a method for calculating end-ring resistance of squirrel cage rotor, based on 3-D finite element method(A-$\Phi$). The resistance under consideration of skin effect is calculated by using Joule's loss equation.

  • PDF

Electromagnetic Force Calculation using Magnetic Vector Potentials in 3-D Problems (자기벡터포텐셜을 이용한 3차원 전자력 계산)

  • Yang, Jae-Jin;Lee, Bok-Yong;Lee, Byung-Hoan;Lee, Ki-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.153-155
    • /
    • 1994
  • Electric machines such as motors which have moving parts are desgined for producing mechanical force or torque. The accurate calculation of electromagnetic force and torque is important in the design these machines, Electromagnetic force calculation method using the results of Finite Element Method(FEM) has been presented variously in 2-D problems. Typically the Maxwell's Stress Tensor method and the method of virtual work are used. In the problems including current source, magnetic vector potentials(MVP) have mostly been used as an unknown variables for field analysis by numerical method; e, g. FEM. This paper, thus, introduces both methods using MVP in 3-D case. To verify the usefulness of presented methods, a solenoid model is chosen and analyzed by 3-D and axisymmetrical FEM. In each case, the calculated force are tabulated for several mesh schemes.

  • PDF

Numerical Analysis of Magnetic Flux Leakage Inspection (누설자속탐상의 수치해석)

  • Lee, Hyang-Beom;Kim, Sean
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.485-492
    • /
    • 2001
  • In this paper, electro-magnetic numerical analysis of MFL(magnetic flux leakage) method is presented. For the electromagnetic numerical analysis, 2-D FEM(finite element method) is used. The magnetic vector potential is used as a variable. The analysis of the magnetic field considering the magnetic nonlinearity is performed for the effect of the magnetic salutation. For the verification of the validity of the numerical simulation results, by using the lab-made experimental setup, non-destructive inspection is performed. The SM 45C carbon steel is used as a specimen and the artificial defects are made on the specimen. The non-destructive testing for the detection of the defect is performed. The results according to the variation oi the defect depth and the defect shape are obtained. The experimental results are compared to the numerical ones, and we conclude that the numerical results are similar to the experimental ones. So the possibility of simulation of the MFL by using the numerical analysis is shown in this paper.

  • PDF

Dynamic Characteristics Analysis Considering the Effect of the Vortexes of Flux in a LIM for Railway Propulsion System (맴돌이 자속의 영향을 고려한 철도추진용 선형유도전동기의 동특성 연구)

  • Park, Chan-Bae;Lee, Byung-Song;Lee, Ju
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.437-442
    • /
    • 2009
  • In the case of a Linear Induction Motor (LIM), numerical analysis method like Finite Element Method (FEM) has been mainly used to analyze the travelling magnetic field problem which includes the velocity-induced electromotive force. If the problem including the velocity-induced electromotive force is analyzed by FEM using the Galerkin method, the solution can be oscillated according to the Peclet Number, which is determined by conductivity, permeability, moving velocity and size of mesh. Consequently, the accuracy of the solution can be low and the vortexes of flux can be occurred at the secondary back-iron. These vortexes of the flux occurred at the secondary back-iron does not exist physically, but it can be occurred in the analysis. In this case, the vortexes of the flux can be generally removed by using Up-Wind method which is impossible to apply a conventional S/W tool (Maxwell 2D). Therefore, in this paper, authors examined the vortexes of the flux occurred at the secondary back-iron of the LIM according to variations of the Peclet Number, and analyzed whether these vortexes of the flux affect on the dynamic force characteristics of the LIM or not.

Characteristic Analysis of Permanent Magnet Linear Generator by using Space Harmonic Method (공간고조파법을 이용한 영구자석 선형 발전기의 특성 해석)

  • Seo, Seong-Won;Choi, Jang-Young;Kim, Il-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.688-695
    • /
    • 2017
  • This paper deals with characteristics analysis of a permanent magnet (PM) linear generator using analytical methods for wave energy harvesting. The wave energy is carried out from the movement of a yo-yo system. A linear generator using permanent magnets to generate a magnetic force itself does not require a separate power supply and has the advantage of simple maintenance. In addition to the use of a rare earth, a permanent magnet having a high-energy density can be miniaturized and lightweight, and can obtain high energy-conversion efficiency. We derived magnetic field solutions produced by the permanent magnet and armature reaction based on 2D polar coordinates and magnetic vector potential. Induced voltage is obtained via arbitrary sinusoidal input. In addition, electrical parameters are obtained, such as back-EMF constant, resistance, and self- and mutual-winding inductances. The space harmonic method used in this paper is confirmed by comparing it with finite element method (FEM) results. These facilitate the characterization of the PM-type linear generator and provide a basis for comparative studies, design optimization, and machine dynamic modeling.