• Title/Summary/Keyword: 인장철근

Search Result 495, Processing Time 0.031 seconds

Theoretical Assessment of Reinforced Steel Fibrous Concrete Beam Equivalent to Conventional RC Beam (일반 RC보와 동등한 강섬유 보강 철근콘크리트 보의 이론적 산정)

  • 이차돈;윤여천
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.195-206
    • /
    • 1997
  • 비선형 layered 유한요소법과 비선형 프로그래밍 기법에 의하여 주어진 기존의 철근콘크리트 보의 휨강도 및 연성을 근사하게 나타낼 수 있는 강섬유고강 철근콘크리트 보(Reinforced Steel Fibrous Concrete Beam : RSFC Beam)의 인장 및 압축철근량, 강섬유의 혼입률 등을 산정하였다. 개발된 모델을 이용하여 콘트리트의 압축강도 및 철근비가 서로 다른 일반 철근콘크리트 보에 있어서 강섬유보강 콘크리트를 사용할 경우, 기존 철근을대체하는 강섬유의 량과 또한 이로 인한 인장 \ulcorner 압축 철근량의 변화량을 조사하였다. 기존 문헌에 나타난 강섬유보강 콘크리트보의 전간강도식을 이용하여 일반 철근콘크리트보와 비교하여 강섬유보강 철근콘크리트 보에서 증가될 수 있는 스터럽의 간격을 산정하였다.

Modeling of Tension Stiffening Effect Based on Nonlinear Bond Characteristics in Structural Concrete Members (비선형 부착 특성에 기반한 철근콘크리트 부재의 인장증강효과 모델)

  • Lee, Gi-Yeol;Ha, Tae-Gwan;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.745-754
    • /
    • 2007
  • This paper presents a unified modeling technique for tension stiffening effect in structural concrete members. The model is mathematically derived from the bond stress-slip relationships which account for splitting crack. The relationships in CEB-FIP Model Code 1990 and Eurocode 2 are employed together with the assumptions of a linear slip distribution along the interface and the uniform condition of concrete tensile contribution for the mid section of cracked member at the stabilized cracking stage. With these assumptions, a model of tension stiffening effect is proposed by accounting for the force equilibrium and strain compatibility condition associated to the steel strain and concrete contribution by bond stress. The model is applied to the test results available in literatures, and the predicted values are shown to be in good agreement with the experimentally measured behavior.

Evaluation of the Effect of Coupler on the Ductility of Rebar by Uniaxial Tensile Test (1축 인장시험을 통한 커플러가 철근 연성도에 미치는 영향 평가)

  • Woo, Tae-Ryeon;Lee, Jong-Han;Cheung, Jin-Hwan;Jung, Chi-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.90-98
    • /
    • 2018
  • Recently, various reinforced concrete joints have been used in reinforced concrete structures. Therefore, it is important to grasp the tensile properties of the spliced rebar. In this study, uniaxial tensile tests were conducted on Grade 60 D22(#7), D29(#9), and two kinds of couplers manufactured according to ASTM A615 standard for evaluating ductility of coupler joints. The strain was measured using an image processing method more accurate and capable of measuring at various points freely. As the result of uniaxial tensile test, it was possible to calculate the stress-strain relationship and the longitudinal strain distribution according to the stress stages and it was founded that the average strain becomes lower as more occupying the coupler joint portions in the same gauge length. In addition, the empirical equations are proposed to account for the effect of the length of the coupler on the ultimate strain and the rupture strain.

Indirect Crack Controling Method Affected by Variation of Material Characteristics in Reinforced Concrete Flexural Members (재료 특성 변화에 따른 철근콘크리트 휨부재의 간접균열제어 방법 연구)

  • Choi, Seung-Won;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.87-98
    • /
    • 2011
  • Crack formations are inevitable in reinforced concrete structures. To estimate crack widths, empirical formulae are used widely and indirect crack controling methods of limiting bar spacing and bar diameter are also used due to their simplicity. In EC2, the characteristic crack width is calculated by multiplying maximum crack spacing and average strain. In this study, limit values of maximum bar spacing and bar diameter are examined as the material characteristics are varied. Two models of tension stiffening effect and maximum crack spacing and their effects are evaluated. The obtained results are compared with the values obtained using KCI method. The results showed that a significant difference is found when two tension stiffening effect are employed, and an under-estimation is found when 2nd order tension stiffening effect and maximum crack spacing limit from Part II were implemented. Therefore, a rational indirect crack control method attained using the tension stiffening effect of 2nd order form is needed. Also, a consistency in serviceabiliy analysis in flexural members needs to be secured. In order to achieve these goals, two crack controling models are suggested.

Strength of PC walls with Diagonal Reinforcements (대각선 철근이 있는 PC 벽체의 강도)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.3-4
    • /
    • 2010
  • Strength of PC walls with diagonal reinforcements can be obtained by using the section analysis. Deformation of the diagonal reinforcements is related to that of flexural reinforcement and makes the another tensile strength on the PC wall. Another tensile strength due to diagonal reinforcements is assumed to be 1/3 point of the distance between the flexural reinforcements.

  • PDF

Flexural Analysis of Reinforced Concrete Members Strengthened with FRP Systems Based on Strength Method (FRP 시스템으로 보강한 철근콘크리트 부재의 휨 해석)

  • Cho, Baik-Soon;Kim, Seong-Do;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.175-186
    • /
    • 2006
  • Strength method for determining nominal moment capacity of reinforced concrete members is also assumed to be suitable for strengthened members with FRP system. If the internal tensile forces of the strengthened member from steel and FRP is insufficient, the FRP system strain might become greater than its ultimate tensile strain which makes the strength method a contradiction and unapplicable. The experimental results of 27 strengthened beams with carbon fiber sheets which have relatively lower tensile forces from steel and FRP show that not only concrete compressive strain is lower than 0.003 but also measured ultimate moment was lower than nominal moment using the strength method.

Tension Stiffening Effect of RC Tension Members Reinforced with Amorphous Steel Fibers (비정질 강섬유로 보강된 철근콘크리트 인장부재의 인장강화효과)

  • Park, Kyoung-Woo;Lee, Jun-Seok;Kim, Woo;Kim, Dae-Joong;Lee, Gi-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.581-589
    • /
    • 2014
  • This paper presents the tension stiffening behavior from experimental results of each 6 amorphous steel fibers and normal steel fibers reinforced direct tensile specimens with the main variables such as cover thickness to bar diameter ratio. A tension stiffening effect for steel fiber reinforced RC tension members improve on the increase in cover thickness, and also amorphous steel fiber is usually superior to normal steel fiber. The reinforcement of steel fibers controlled the splitting cracks and led to significant increase in the tension stiffening effect. In particular, if cover thickness is more than twice the bar diameter, the amorphous steel fiber reinforced specimen is controlled the splitting crack and increased the tension stiffening effect. And, the tension stiffening effect of amorphous steel fiber reinforced concrete tension members is different to current structural design code provision.

A Numerical Study on Flexural Strength with the Spreading of Upper Reinforcement of Girder into the Adjoining Slab (보 상부철근의 슬래브 내 분산배근에 따른 휨강도의 수치해석적 연구)

  • Park, Jung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1179-1185
    • /
    • 2007
  • The study of girder-to-column joints under experiment and numerical analysis was carried out to evaluate change of the flexural capacity of the joints with the 2-layer upper reinforcement of girder within rectangular section and the single-layered upper reinforcement at the girder flange. According to the analysis results using the flange width, the flange thickness and the location of reinforcements in the upper flange as variables, in the models with a same effective width, the increasing rate of capacity has nothing to do with the flange width with a same effective width. However, the capacity of the models with the upper reinforcements arranged close to the rectangular beam section is larger than that of the models with the upper reinforcements arranged remotely from the rectangular section. If the range of arrangement fur reinforcement exceeds the effective width, despite of increasing the flange thickness, the capacity is not increased.

  • PDF

Arch Action in Reinforced Concrete Beams (철근콘크리트보에서의 아취현상에 대한 연구)

  • Kim, Woo;Kim, Dae-Joong;Mo, Gui-Suk;Ko, Kwang-Il
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.180-187
    • /
    • 1994
  • Sixteen reinforced concrete beams were tested statically up to failure to investigate the arch action. Major variables were the shear span to depth ratio, steel ratio and existence of stirrups.The arch action in reinforced concrete beams started when flexural cracks appeared at the center of the span. Due to the reduction of internal moment arm length by the development of arch action, the measured steel tension was significantly higher than the calculated. As the shear span to depth ratio arid steel ratio decrease, the arch action in reinforced concrete eams increases. Over the entire length the force in the steel of no web reinforced beams having smaller a /d ratio than 3 was constant because the beams acted as a tied arch.

Bending performance evaluation of high strength and seismic purpose reinforcing bars (고강도 및 내진용 철근의 굽힘성능 평가)

  • Kim, Hee-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.492-498
    • /
    • 2017
  • This study examined the bending performance of high strength and seismic purpose reinforcing bars experimentally with various parameters. For the experimental approach on the bending performance, the specimens were prepared with parameters, such as steel grades, diameters of reinforcing bars, and bending angles of reinforcing bars. Tensile strength tests on the reinforcing bars, the bending tests and re-bending tests, and the second tensile strength tests on the re-bended reinforcing bars were conducted. According to the test results on high strength and seismic purpose reinforcing bars, defects did not appear when the yield strength of the reinforcing bar was 500 MPa or less and the diameter was D13 or less, even when the first bending process was performed with a $135^{\circ}$ bending angle and a $2d_b$ inner radius. The bending performance decreased asthe strength and diameter of the reinforcing bars was increased. In addition, there was no significant difference between the general reinforcing bars and seismic purpose-reinforcing bars.