• Title/Summary/Keyword: 인식률 향상

Search Result 911, Processing Time 0.039 seconds

A study on performance improvement of neural network using output probability of HMM (HMM의 출력확률을 이용한 신경회로망의 성능향상에 관한 연구)

  • 표창수;김창근;허강인
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.157-160
    • /
    • 2000
  • 본 논문은 HMM(Hidden Markov Model)을 이용하여 인식을 수행할 경우의 오류를 최소화 할 수 있는 후처리 과정으로 신경망을 결합시켜 HMM 단독으로 사용하였을 때 보다 높은 인식률을 얻을 수 있는 HMM과 신경망의 하이브리드시스템을 제안한다. HMM을 이용하여 학습한 후 학습에 참여하지 않은 데이터를 인식하였을 때 오인식 데이터를 정인식으로 인식하도록 HMM의 출력으로 얻은 각 출력확률을 후처리에 사용될 MLP(Multilayer Perceptrons)의 학습용으로 사용하여 MLP를 학습하여 HMM과 MLP을 결합한 하이브리드 모델을 만든다. 이와 같은 HMM과 신경망을 결합한 하이브리드 모델을 사용하여 단독 숫자음과 4연 숫자음 데이터에서 실험한 결과 HMM 단독으로 사용하였을 때 보다 각각 약 4.5%, 1.3%의 인식률 향상이 있었다. 기존의 하이브리드 시스템이 갖는 많은 학습시간이 소요되는 문제점과 실시간 음성인식시스템을 구현할 때의 학습데이터의 부족으로 인한 인식률 저하를 해결할 수 있는 방법임을 확인할 수 있었다.

  • PDF

A Method to Enhance the Recognition Rate of Marker Images in Augmented Reality (증강현실 마커 이미지의 인식률 개선 방안)

  • Park, Chan;Lee, Wan-Bok
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • As augmented reality technology becomes more common and prevelant, marker-based AR contents are applied in various ways. However AR contents are still hardly utilized due to the low recognition rate of marker images. In order to increase the recognition rate of AR marker images, this paper experiment and analyzed how much the recognition rate of markers could be improved when image correction and design changes was applied. The experimental result shows that the image correction task could significantly improve the number of image characteristics and the recognition grade if the image was modified in a way its saturation value is increased. Moreover, the recognition rate was improved even more when regular pattern design was added to the original marker image. In conclusion, it was possible to make the marker well recognized through proper correction of the image and additional process of pattern design in the process of producing the marker image.

Improvement of Face Recognition Rate by Preprocessing Based on Elliptical Model (타원 모델기반의 전처리 기법에 의한 얼굴 인식률 개선)

  • Won, Chul-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.4
    • /
    • pp.56-63
    • /
    • 2008
  • Image calibration at preprocessing step is very important for face recognition rate improvement, and background noise deletion affects accuracy of face recognition specially. In this paper, a method is proposed to remove background area utilizing elliptical model at preprocessing step for face recognition rate improvement. As human face has the shape of ellipse, a face contour can be easily detected by using the elliptical model in face images.

  • PDF

Improving Performance of Continuous Speech Recognition Using Error Pattern Training and Post Processing Module (에러패턴 학습과 후처리 모듈을 이용한 연속 음성 인식의 성능향상)

  • 김용현;정민화
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.441-443
    • /
    • 2000
  • 연속 음성 인식을 하는 경우에 많은 에러가 발생한다. 특히 기능어의 경우나 서술어의 경우에는 동시 조음 현상에 의한 음운 변화에 의해 빈번한 에러가 발생한다. 이러한 빈번한 에러를 수정하기 위한 방법에는 언어 모델의 개선과 음향 모델의 개선등을 통한 인식률 향상과 여러 단계의 인식과정을 두어 서로 다른 언어 모델을 적용하는 등의 방법이 있지만 모두 시간과 비용이 많이 들고 각각의 상황에 의존적인 단점이 있다. 따라서 본 논문에서 제안하는 방법은 이것을 수정하기 위해 음성 인식기로부터 인식되어 나온 결과 문장을 정답과 비교, 학습함으로써 빈번하게 에러 패턴을 통계적 방법에 의해 학습하고 후처리 모듈을 이용하여 인식시에 발생하는 에러를 적은 비용과 시간으로 수정할 수 있도록 하는 것이다. 실험은 3000 단어급의 한국어 낭독체 연속 음성을 대상으로 하여 형태소와 의사형태소를 각각 인식단위로 하고, 언어모델로 World bigram과 Tagged word bigram을 각각 적용 실험을 하였다. 형태소, 의사 형태소일 경우 모두 언어 모델을 tagged word bigram을 사용하였을 경우 N best 후보 문장 중 적당한 단어 후보의 분포로 각각 1 best 문장에 비해 12%, 18%정도의 에러 수정하여 문장 인식률 향상에 상당한 기여를 하였다.

Performance Improvement of Eye Tracking System using Reinforcement Learning (강화학습을 이용한 눈동자 추적 시스템의 성능향상)

  • Shin, Hak-Chul;Shen, Yan;Khim, Sarang;Sung, WonJun;Ahmed, Minhaz Uddin;Hong, Yo-Hoon;Rhee, Phill-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.171-179
    • /
    • 2013
  • Recognition and image processing technology depends on illumination variation. One of the most important factors is the parameters of algorithms. When it comes to select these values, the system has different types of recognition accuracy. In this paper, we propose performance improvement of the eye tracking system that depends on some environments such as, people, location, and illumination. Optimized threshold parameter was decided by using reinforcement learning. When the system accuracy goes down, reinforcement learning used to train the value of parameters. According to the experimental results, the performance of eye tracking system can be improved from 3% to 14% by using reinforcement learning. The improved eye tracking system can be effectively used for human-computer interaction.

Feature Extraction Method of 2D-DCT for Facial Expression Recognition (얼굴 표정인식을 위한 2D-DCT 특징추출 방법)

  • Kim, Dong-Ju;Lee, Sang-Heon;Sohn, Myoung-Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.3
    • /
    • pp.135-138
    • /
    • 2014
  • This paper devices a facial expression recognition method robust to overfitting using 2D-DCT and EHMM algorithm. In particular, this paper achieves enhanced recognition performance by setting up a large window size for 2D-DCT feature extraction and extracting the observation vectors of EHMM. The experimental results on the CK facial expression database and the JAFFE facial expression database showed that the facial expression recognition accuracy was improved according as window size is large. Also, the proposed method revealed the recognition accuracy of 87.79% and showed enhanced recognition performance ranging from 46.01% to 50.05% in comparison to previous approaches based on histogram feature, when CK database is employed for training and JAFFE database is used to test the recognition accuracy.

A Study on Target Recognition with SAR Image using Support Vector Machine based on Principal Component Analysis (PCA 기반의 SVM을 이용한 SAR 이미지의 표적 인식에 관한 연구)

  • Jang, Hayoung;Lee, Yillbyung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.434-437
    • /
    • 2011
  • 차세대 지능적 무기체계의 자동화를 목표로 SAR(Synthetic Aperture Radar) 영상 신호를 이용한 표적 인식률 향상을 위한 여러가지 방법들이 제안되어 왔다. 기존의 연구들은 SAR 영상의 고차원 특징을 그대로 사용했기 때문에 표적 인식의 성능저하가 있었다. 본 연구에서는 정보 획득 거리가 길고, 날씨에 제약이 없이 전천후 작전 운용이 가능하도록 레이더의 특징과 고해상도 영상을 결합한 SAR 이미지를 이용한 표적 인식률 향상 방법을 제안한다. 효과적인 표적 인식을 하기위해 고차원의 특징벡터를 저차원의 특징벡터로 축소하는 PCA(Principal Component Analysis)를 기반으로 하는 SVM(Support Vector Machine)을 사용한 표적 인식 기법을 사용하였고, PCA 기반의 SVM 분류기를 이용한 표적 인식이 SVM 만을 사용한 표적 인식보다 향상된 성능을 보인 것을 확인하였다.

Using speech enhancement parameter for ASR (잡음환경의 ASR 성능개선을 위한 음성강조 파라미터)

  • Cha, Young-Dong;Kim, Young-Sub;Hur, Kang-In
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2006.06a
    • /
    • pp.63-66
    • /
    • 2006
  • 음성인식시스템은 사람이 별도의 장비 없이 음성만으로 시스템의 사용이 가능한 편리한 장점을 지니고 있으나 여러 가지 기술적인 어려움과 실제 환경의 낮은 인식률로 폭넓게 사용되지 못한 상황이다. 그 중 배경잡음은 음성인식의 인식률을 저하시키는 원인으로 지적 받고 있다. 이러한 잡음환경에 있는 ASR(Automatic Speech Recognition)의 성능 향상을 위해 외측억제 기능 이 추가된 파라미터를 제안한다. ASR 에서 널리 사용되는 파라미터인 MFCC을 본 논문에서 제안한 파라미터와 HMM를 이용하여 인식률을 비교하여 성능을 비교하였다. 실험결과를 통해 제안된 파라미터의 사용을 통해 잡음환경에 있는 ASR의 성능 향상을 확인할 수 있었다.

  • PDF

The Contrast Ratio Applied Preprocessing Method for Enhancing Recognition Rate of Artificial Intelligence (인공지능 인식률을 높이기 위한 명암비 적용 전처리 방법)

  • Kim, Sung-Jung;Yoo, Jaechern
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.19-21
    • /
    • 2019
  • 본 논문에서는 인공지능의 인식률을 높이기 위해 명암비를 적용한 전처리 방법에 대해 제안한다. 이 방법은 인공지능이 기존의 방법보다 특징점을 쉽게 얻어내기 위해서 명암비를 적용한 전처리를 진행하여 인식률을 높이기 위함에 목적을 두고 있다. 제안한 방법으로 인하여 문자인식이 얼마나 향상되었고, 기존의 성능과 비교하여 정확도가 얼마나 향상되었는지를 알아보고 있다.

  • PDF

Curvelet Based Face Recognition using (2D)$^2$PCA ((2D)$^2$PCA 의 차원축소를 통한 Curvelet 기반 얼굴인식)

  • Lee, Bo-Hyun;Lee, Seong-Joo;Lee, Il-Byung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.479-482
    • /
    • 2011
  • 얼굴인식의 인식률 향상과 계산량을 줄이기 위한 방법으로 Curvelet 변환과 (2D)$^2$PCA(Two directional two-dimensional PCA) 를 통한 특징추출 및 차원축소 방법을 제안한다. 기존의 Wavelet 변환과 PCA 를 통한 기법들이 소개되어 인식률 향상을 이끌어 냈다. 그런데 Curvelet Transform 은 곡선의 정보를 효과적으로 표현할 수 있는 장점이 있고, (2D)$^2$PCA 는 PCA 에 비해 계산량이 적은 장점이 있기 때문에 이를 이용하여 인식률과 처리성능 측면에서 개선된 결과를 얻고자 한다.