• Title/Summary/Keyword: 인산흡착

Search Result 155, Processing Time 0.027 seconds

Effect of Antibiotic Fermentation Residues on Rice and Tomato Growth (항생물질 발효 부산물이 수도 및 토마토 생육에 미치는 영향)

  • Lim, Soo-Kil;Yang, Han-Chul;Kim, Sung-Bok;Kwon, Hyok-Ji
    • Korean Journal of Environmental Agriculture
    • /
    • v.3 no.1
    • /
    • pp.52-56
    • /
    • 1984
  • In order to evaluate the applicability of two kinds of antibiotic fermentation residues on rice and tomato growth, yield, yield components, and some indicators for plant growing status were checked including analysis of physico-chemical properties of these two antibiotic fermentation residues. The results obtained are as follows: 1) These two antibiotic fermentation residues contain high organic matter ($21.6{\sim}24.2%$), phosphorus ($2900{\sim}4600 ppm$) and exchangeable cations ($55.4{\sim}138.3 meq/100 g$,), showing their pH values of $7.0{\sim}8.0$ range. 2) Both have developed net positive charge rather high and stiffly that exhibits high negative ion adsorption capacities, accordingly showing higher zero point of charges($pH 7.0{\sim}8.0$) than those of common soils. 3) The effect of the two kinds of antibiotic fermentation residues on rice growth was more or less the same comparable to the effect of the other fertilizers applied, showing the maximum yield at the application rate of 40 ㎏/10a. 4) The effect of these antibiotic fermentation residues on tomato growth was also similar to effects on rice plant showing the yield increment upon fertilizer application including two antibiotic fermentation residues but no significant differences among fertilizers. 5) According to the plant growing status, plant height, dry matter, number of effective tillers and grain number per panicle of rice and plant height and fresh weight of plant of tomato showed similar trend with yield of both plants.

  • PDF

Characteristics and Mechanisms of Phosphate Sorption by Calcined Oyster Shell (소성 굴패각에 의한 인산염의 흡착특성 및 메커니즘)

  • Park, Jong-Hwan;Heo, Jae-Young;Lee, Su-Lim;Lee, Jae-Hoon;Hwang, Se-Wook;Cho, Hyeon-Ji;Kwon, Jin-Hyeuk;Chang, Young-Ho;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • BACKGROUND: Although the calcined oyster shell can be used as a calcium-rich adsorbent for phosphate removal, information about it is limited. The purpose of this study was to evaluate the phosphate adsorption characteristics and its mechanism using calcined oyster shells. METHODS AND RESULTS: In this study, calcined oyster shell (C-OS600) was prepared by calcining oyster shells (P-OS) at 600℃ for 20 min. Phosphate adsorption by C-OS600 was performed under various environmental conditions. Phosphate adsorption by C-OS600 occurred rapidly at the beginning of the reaction, and the time to reach equilibrium was less than 1 h. The optimal isotherm and kinetic models for predicting the adsorption of phosphate by C-OS600 were the Langmuir isotherm and pseudo-second order kinetic model, respectively, and the maximum adsorption capacity derived from the Langmuir isotherm was 68.0 mg/g. The adsorption properties of phosphate by C-OS600 were dominantly influenced by the initial pH and C-OS600 dose. In addition, SEM-EDS and FTIR analysis clearly showed a difference in C-OS600 before and after phosphate adsorption, which proved that phosphate was adsorbed on the surface of C-OS600. CONCLUSION: Overall, the calcined oyster shell can be considered as an useful and effective adsorbent to treat wastewater containing phosphate.

Assessments of Dissolved Rare Earth Elements and Anthropogenic Gadolinium Concentrations in Different Processes of Wastewater Treatment Plant in Busan, Korea (부산 하수처리장에서 공정별 용존 희토류 원소의 농도 및 인위적 기원 가돌리늄의 배출량 평가)

  • Lim, Ijin;Ryu, Jong-Sik;Lee, Joonyeob;Lee, Jun-Ho;Cho, Hyung-Mi;Kim, Taejin
    • Journal of the Korean earth science society
    • /
    • v.43 no.2
    • /
    • pp.303-311
    • /
    • 2022
  • Gadolinium, commonly used as a contrast agent for magnetic resonance imaging (MRI), is discharged into aquatic environments without removal after treatment in wastewater treatment plants (WWTPs) because of its high stability. In this study, we collected water samples from Suyeong WWTP, Busan, to investigate the dissolved rare earth element (REE) removal capacity of each wastewater treatment process and to evaluate the discharge of anthropogenic Gd (Gdanth) from effluents. As wastewater passed through each stage of treatment, the concentrations of light REEs (La-Eu) decreased, whereas those of heavy REEs (Tb-Lu) were relatively consistent. Negative Sm anomalies (<1) were observed in several samples, indicating that Sm can be removed by adsorption onto particles or phosphate during the biological removal process. Positive Gd anomalies (149±50, n=9) were observed in all samples. The ratios of Gdanth concentrations to measured Gd concentrations in all wastewater treatment processes were higher than 97%. This indicates that Gdanth was discharged to the Suyeong River without removal during the wastewater treatment process. Considering the daily treatment capacity in each process, the total flux of Gdanth was estimated to be 259 mmol/day. Our results suggest that mid- and/or long-term monitoring of Gd is needed because Gdanth is continuously discharged into Suyeong Bay through WWTPs.

Cesium Radioisotope Measurement Method for Environmental Soil by Ammonium Molybdophosphate (환경토양에서 몰리브도인산 암모늄을 이용한 세슘 동위원소 평가방법)

  • Choe, Yeong-hun;Seo, Yang Gon
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.122-131
    • /
    • 2016
  • Caesium radioisotopes, 134Cs and 137Cs which come from the atmospheric nuclear tests and discharges from nuclear power plants, are very important to study artificial radioactivity. In this work, in order to lower the minimum detection activity (MDA) we investigated environmental radioactivity according to the Environment Measurement Laboratory procedure by 137Cs and 134Cs which is similar to chemical and environmental behaviors of 137Cs. The environmental soils in high mountain areas near nuclear power plant were collected, and an Ammonium Molybdophosphate (AMP) precipitation method, which showed high selectivity toward Cs+ ions, was applied to chemically extract and concentrate Caesium radioisotopes. Radioactivity was estimated by a gamma-ray spectrometry. In gamma energy spectrum, with an increasing of 40K radioactivity, it increased the MDA of 134Cs and 137Cs. Therefore, if the natural radionuclides were removed from the soil samples, the MDA of Caesium may be reduced, and the contents of 137Cs of in the environmental soils can effectively be estimated. In the standard soil sample of Korea Institute of Nuclear Safety, radioactivity of 40K was removed more than 84% on average, and the MDA of 134Cs was reduced 2 times. The content of 137Cs was recovered over 84%. On the other hand, in environmental soils, AMP precipitation method showed removal ratio of 40K up to 180 times, which reduced the MDA about 5 times smaller than those of Direct method. 137Cs recovery ratio showed from 54.54% to 70.06%. When considering the MDA and recovery ratio, AMP precipitation method is effective for detection of Caesium radioisotopes in low concentration.

Phosphorous Removal in a Free Water Surface Wetland Constructed on the Gwangju Stream Floodplain (광주천 고수부지에 조성한 자유수면인공습지의 인 제거)

  • Yang, Hong-Mo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.100-109
    • /
    • 2012
  • Removal rates of $PO_4-P$ and TP in a free water surface wetland system were investigated. The system was established in 2008 on a floodplain in the middle reach of the Gwangju Stream flowing through Gwangju City. Its dimensions were 46 meters in length and 5 meters in width. Two year old Typha angustifloria L. growing in pots were planted on half of the area and Zizania latifolia Turcz on the other half in 2008. Stream water was funneled into the wetlands by gravity flow, and its effluent was discharged back into the stream. The influent volume was controlled by valves and water depth was adjusted by wires. Volume and water quality of inflow and outflow were analyzed from January to December in 2010. Inflow into the system averaged approximately $710m^3/day$ and hydraulic residence time was about 1.5 hours. Average influent and effluent $PO_4-P$ concentration were 0.144 and 0.103mg/L, respectively, and $PO_4-P$ abatement amounted to 28.6%. Influent and effluent TP concentration averaged 0.333 and 0.262mg/L, respectively, and TP retention reached to 20.7%.$PO_4-P$ removal rate(%) during plant growing season(31.448) was significantly high(p<0.001) when compared with that during plant non-growing season(25.829). TP abatement rate(%) during plant growing season(27.230) was also significantly high(p<0.001) when compared with that of the non-growing season(14.856). Major phosphorous removals in the system resulted from adsorption of phosphorous in the litter-soil layers; sedimentation of particulate phosphorous and Ca, Al, Fe bounded phosphates; and absorption of phosphorous by emergent plants. The adsorption and sedimentation occurred throughout the year, however, the absorption took place during plant growing season. This resulted in higher removals of $PO_4-P$ and TP during plant growing season.

Changes of Microbial Community Associated with Construction Method and Maintenance Practise on Soil Profile in Golf Courses (지반 조성과 관리방법에 따른 골프장 토양내 미생물 군집의 변화)

  • Moon, Kyung-Hee;Kim, Ki-Dong;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.219-228
    • /
    • 2009
  • The construction procedures and artificial turf maintenance program on golf course definitely influence on the distortion of its environment. Soil microbial communities in soil profile were affected directly by those practises on turf areas. In Jeju island, the environmental impact assessment has been required to apply the first quality class granular activated carbon(GAC), which has a high absorbent character to agricultural chemicals, on the soil profiles of golf green system to reduce the pesticide leaching to ground water. This research was carried out to analyze the changes of microbial communities and chemical properties on soil profiles where GAC had been applied at the construction stage at two golf courses in Jeju. The changes of soil microbial population and chemical properties associated with construction methods of soil profile and agrochemical management program were analyzed by monthly at the surface and sub-soil profiles during April through October, 2007. The total numbers of bacteria and fungi, soil moisture content, soil physio-chemical properties were measured on greens and fairways of the both golf courses with different GAC treatment on the green and fairway soil profiles. The results showed that GAC had positive effects on the water holding capacity, pH and EC, however, it did not improved the holding capacity of available nutrients ${NO_3}^-,{NH_4}^+$, and phosphorus by its sorption phenomenon. In microbial count test, the total numbers of bacteria and fungi showed a great variation during sampling dates. That may directly relate to the agrochemical application, however, the ratio of total bacterial number versus total fungus number showed a constant value on a sub-soil of 15~30cm depth. Thus, the construction method of GAC in soil profile, and application of fertilizer and pesticide, both impacted on the changes of microbial population. It's means that the construction method of soil profile and turf management using agro-materials might greatly affect on the turfgrass culture and the environment of golf course.

A Study on the Structure Characteristics of Planting Ground in Incheon International Airport, Korea (인천국제공항 식재기반 구조 및 토양특성 연구)

  • Lee, Seung-Won;Han, Bong-Ho;Lee, Kyong-Jae;Kwak, Jeong-In;Yeum, Jung-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.77-91
    • /
    • 2015
  • This study aims to suggest adequate soil management through the analysis of physicochemical properties of soil in the planting grounds of Incheon International Airport, which was constructed on a massive land reclamation site. Study areas were 5 sites at the international business complex, the passenger terminal, the airport support complex, the free trade zone, and the access road. Soil profile analysis showed that 9 plots out of the 27 plots were hardpan and heterospere within 80cm from the soil surface. The earth laid on the ground was categorized as gravel based soil(4 plots), dredged soil from the sea bottom and mixed reclamation materials(2 plots), clay with poor permeability(3 plots) and waste construction material(1 plot). Average soil hardness was $11.5kg/cm^2$ and soil textures were sandy soil, sandy loam and loamy sand. Average soil pH was 6.7 and average organic matter content was 0.7%. Electrical conductivity was 0.0dS/m and exchangeable cation concentrations were $Ca^{2+}$ 3.4cmol/kg, $Mg^{2+}$ 1.5cmol/kg, $K^+$ 0.3cmol/kg and $Na^+$ 1.0cmol/kg. Average cation exchange capacity was 11.0cmol/kg. Although average figures in Solum mostly meet the landscape design criteria, properties of each soil layer showed various values sometimes over the limit. Base saturations were $Ca^{2+}$ 29.9%, $Mg^{2+}$ 13.3% and $K^+$ 3.7% for lower soil, $Ca^{2+}$ 33.3%, $Mg^{2+}$ 17.0% and $K^+$ 2.7% for mid-soil and $Ca^{2+}$ 32.6%, $Mg^{2+}$ 12.2% and $K^+$ 1.9% for upper soil. Exchangeable sodium percentages were 16.4% for lower soil, 7.5% for mid-soil and 4.7% upper soil. Sodium adsorption rates were 0.8 for lower soil, 0.3 for mid-soil and 0.2 for upper soil. Factors affecting to the vegetation growth were heterogeneity and poorness of solum, disturbance of dredged soils, high soil hardness including hardpan in the subsurface soil layer and shallow effective soil depth, high soil acidity, imbalance of base contents, low organic matter content and low available phosphate levels in the soil.

Influence of Land Use on the Pollution Load in the Saemangeum Basin (새만금 유역에서 토지 이용이 오염부하에 미치는 영향 평가)

  • Lee, Deog-Bae;Kim, Jong-Cheon;Lee, Kyung-Bo;Kim, Jong-Gu;Park, Chan-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.4
    • /
    • pp.237-244
    • /
    • 2006
  • The SMG project has been driven to secure food and water resources by closing of the SMG dyke for the preparation of the unification of Korean peninsular. It was investigated for pollution loads, land use distribution and water consumption for environmental assessments in two watersheds, the Mankyeong River (MK) and the Dongjin River (DJ) to assess the role of agricultural land on the alleviation of pollution loads to the SMG basin. It is needed to give the priority in managing pollution sources to conserve freshwater in the Saemangeum (SMG) basin after the completion of the SMG reclamation from tideland. The MK has $700million\;m^3$ water of which 14.1% were used for living, 73.6% for agriculture and 12.3% for industry. The DJ has $505million\;m^3$ water of which 3.0% for living, 94.5% for agriculture and 2.5% for industry. As compared to proportion of each land of total area, agricultural land was 1.4 times larger, livestock farming 7 times larger, forest 0.74 times smaller, and built-up area 0.67 times smaller in DJ watershed than in MK watershed. Pollution sources in MK and DJ watersheds were originated at a higher proportion from population including the sewage disposal and a livestock farming area rather than from the land. Water consumption and land use distribution influenced the water quality of the rivers; DJ watershed had far lower value of electric conductivity, $BOD_5$, TN and TP than MK watershed. A large proportion of paddy field also influenced to reduce pollute loadings after rainfall; DJ watershed, which has a relatively large area of paddy fields, had a far lower delivery load after rainfall than MK watershed even though DJ watershed had large livestock farming area. As paddy fields was irrigated by Iksancheon water, 37% of nitrogen, 50% of phosphates and 14.0% of $BOD_5$ was removed by the paddy field just after flowing 150 meter, and rice plants could remove TN 100.0 kg, $P_2O_5$ 24.0 kg, and $K_2O$ 119.2 kg per hectare at harvest by irrigation of Iksancheon water. Conclusively, rice paddy fields played a positive role to conserve the water quality in the Iksancheon watershed.

Anti-inflammatory Activity of Antimicrobial Peptide Zophobacin 1 Derived from the Zophobas atratus (아메리카왕거저리 유래 항균 펩타이드 조포바신 1의 항염증활성)

  • Shin, Yong Pyo;Lee, Joon Ha;Kim, In-Woo;Seo, Minchul;Kim, Mi-Ae;Lee, Hwa Jeong;Baek, Minhee;Kim, Seong Hyun;Hwang, Jae Sam
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.804-812
    • /
    • 2020
  • The giant mealworm beetle, Zophobas atratus (Coleoptera: Tenebrionidae) has been used as a protein source for small pets and mammals. Recently, it was temporarily registered in the list of the Food Code. We previously performed an in silico analysis of the Zophobas atratus transcriptome to identify putative antimicrobial peptides and identified several antimicrobial peptide candidates. Among them, we assessed the antimicrobial and anti-inflammatory activities of zophobacin 1 that was selected bio-informatically based on its physicochemical properties against microorganisms and mouse macrophage Raw264.7 cells. Zophobacin 1 showed antimicrobial activities against microorganisms without inducing hemolysis and decreased the nitric oxide production of the lipopolysaccharide-induced Raw264.7 cells. Moreover, ELISA and Western blot analysis revealed that zophobacin 1 reduced expression levels of pro-inflammatory enzymes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). We also investigated expression of pro-inflammatory cytokines (interleukin-6 and interleukin-1β) production through quantitative real time-PCR and ELISA. Zophobacin 1 markedly reduced the expression level of cytokines through the regulation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling. We confirmed that zophobacin 1 bound to bacterial cell membranes via a specific interaction with lipopolysaccharides. These data suggest that zophobacin 1 could be promising molecules for development as antimicrobial and anti-inflammatory therapeutic agents.

Effect of Interaction between Nutritional Level and Breed on Performance of Broiler Production (BROILER 사료의 영양수준이 육용계종의 산육능력에 미치는 영향)

  • 오봉국;오세정
    • Korean Journal of Poultry Science
    • /
    • v.6 no.1
    • /
    • pp.12-23
    • /
    • 1979
  • This experiment was carrid out to investigate the interaction between boilelr strains and nutrition levels, and the performances of four broiler strains such as Han Hyup 603, Hubbard, Anak and Filch when they were fed by four different nutrition levels (High Protein and energy; HP. HE., Medium Protein and energy; MP. ME., Low Protein ana energy; LP. LE., and low protein and energy; LLP. LLE.). The data used in this study were obtained from a total of 1200 broiler type chicks in Poultry Testing Station, Korean Poultry Association from June 16, to August 11, 1978. Differences of all characters among four nutrition levels were significant except viability and carcass rate. HP. HE and MP. ME treatments showed nearly the same performances in body weight, feed efficiency and point, spread but they were significantly superior to those of LP. LE and LLP. LLE. There were not significant differences among four strains in feed efficiency and viability but other characters, body weight, point spread and carcass rate were observed that the performance of the best strain B was significantly superior to strain D but it was not recognized significance compared with strain A, C in tile result of statisticel analysis. In the interaction between strains and nutrition levels, body weight at high and levels showed significantly differences but at low and low nutrition levels were nearly same among four strains. Therefore this study demonstrated that comparision of body weights between strains should be performed at medium nutrition level or above. Also point spread calculated as index of body weight and feed efficiency was observed that strain B at low nutrition level is excellently higher than other strains and there were little differences at low nutrition level among all strains. It was found that ]it tie differences between performances of high arid medium levels seemed to be as the reason of high fat addition for energy source to high mutrition feed, and in general superior strain showed good performance at all the nutrition levels in$.$all characters but in body weight and point spread there were significantly different responses with different nutrition level, The most superior strain B among four strains earned the most profit per bird, Although performances of high and medium nutrition levels were nearly the same, medium nutrition level also showed the most profit because the feed cost of high nutrition level was higher than that of medium nutrition level.

  • PDF