• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.028 seconds

Trend of AI Neuromorphic Semiconductor Technology (인공지능 뉴로모픽 반도체 기술 동향)

  • Oh, K.I.;Kim, S.E.;Bae, Y.H.;Park, K.H.;Kwon, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.3
    • /
    • pp.76-84
    • /
    • 2020
  • Neuromorphic hardware refers to brain-inspired computers or components that model an artificial neural network comprising densely connected parallel neurons and synapses. The major element in the widespread deployment of neural networks in embedded devices are efficient architecture for neuromorphic hardware with regard to performance, power consumption, and chip area. Spiking neural networks (SiNNs) are brain-inspired in which the communication among neurons is modeled in the form of spikes. Owing to brainlike operating modes, SNNs can be power efficient. However, issues still exist with research and actual application of SNNs. In this issue, we focus on the technology development cases and market trends of two typical tracks, which are listed above, from the point of view of artificial intelligence neuromorphic circuits and subsequently describe their future development prospects.

A Study of Artificial Chatbot System for User Query Self-Learning (사용자 질의 자가학습형 인공지능 챗봇 시스템)

  • Park, Seong-Hyeon;Hong, Seok-Hun;Hwang, Su-Hyeon;Nasridinov, Aziz;Yoo, Kwan Hee;Hong, Jang-Eui
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.628-630
    • /
    • 2018
  • 인공지능에 대한 연구가 최근 이슈가 되면서, 딥러닝 기술의 비약적인 발전 덕분에 대화형 에이전트가 인터페이스의 역할을 하고 있다. 이 중에서 최근 여러 대학에서 서비스로 지원하는 챗봇 시스템의 문제점에 대하여 개선된 시스템을 제안하고, 이를 구현하여 실험을 통해 연구하고자 한다. 기존 챗봇 시스템이 가진 문제점을 보완한 시스템은 서비스 사용자가 질의하는 의도에 더 알맞은 응답을 제공하여 서비스 사용자의 불편함을 최소화하고, 사용성과 편의성을 최대화 하는 것을 목적으로 한다.

A study on the Algorithm for automated extraction for chemical term in Korean patents (국내 특허 문헌 내 화학 용어 자동 추출을 위한 알고리즘 연구)

  • Lee, Hayoung;Kim, Hongki;Park, Jinwoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.273-276
    • /
    • 2019
  • 본 논문에서는 열 및 전기특성 플라스틱 복합수지와 한글에 특화된 인공지능 기술을 개발하기 위한 조성/물성 정보 복합수지 지식베이스를 구축하고자 국내 특허 문헌에서 화학 용어를 추출하고자 한다. 이를 위해 전문용어가 많이 쓰인 특허 문헌의 특수성을 고려하여 UIMA(Unstructured Information Management Architecture) 규칙 기반의 라이브러리를 사용해 한국어 화학 용어 코퍼스를 구축하고 이를 기반으로 딥러닝 알고리즘 중 하나인 Bidirectional LSTM-CRF를 기반으로 특허 문헌에서 화학 용어를 자동으로 추출하는 알고리즘을 연구하고자 한다.

  • PDF

AIchatbot service plan for traditional culture contents creation field (전통문화콘텐츠 창작분야 AI챗봇 서비스 방안 - 스토리테마파크를 중심으로 -)

  • Kim, Ki-hae
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2019.05a
    • /
    • pp.423-424
    • /
    • 2019
  • 인공지능 기술의 발전으로 딥러닝, 자연어처리 기술이 챗봇(채팅+로봇)에 적용되어 금융, 헬스케어, 여행, 방송 등의 분야를 중심으로 챗봇 시장이 확대되고 있다. 이러한 디지털 환경의 변화에 따라 전통문화 관련 개방 데이터를 활용한 전통문화 콘텐츠의 활성화 방안에 대해 살펴보고자 한다. 전통문화 소재는 영화, 드라마, 애니메이션 등의 소재로 활용 폭이 꾸준히 확대되고 있으나 현대적인 재창조의 폭넓은 대상이 되지는 못하고 있다. 팩트를 다루는 역사적 사실은 물론, 그 당시 살았던 사람들의 이야기 발굴에 대한 창작자들의 수요에 부응할 수 있는 체계적인 정보서비스로서의 전통문화 분야 인공지능(AI) 챗봇 서비스는 예비창작자와 일반인에게 창작의 유용한 가이드가 될 것으로 기대한다.

  • PDF

Development of PCB Classification System Using Robot Arm and Machine Vision (로봇암과 머신비전을 이용한 기판분류 시스템 개발)

  • Yun, Tae-Jin;Yeo, Jeong-Hun;Kim, Hyun-Su;Park, Seung-Ryeol;Hwang, Seung-Hyeok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.145-146
    • /
    • 2020
  • 현재 4차 산업 혁명 시대에서 가장 중요한 화두는 빅데이터(Big Data), 인공지능이며, 이를 이용한 분야로 생산, 제조 분야에서도 인공지능 영상 인식 기술을 활용한 생산품을 자동으로 분류하고 나아가 품질검사도 할 수 있도록 개발하고 있다. 또한, 로봇을 공장의 생산라인에 운영하여 노동력 감소에 따른 보완이 되고, 제조과정의 효율성 증가와 생산시간 감소로 생산성을 높일 수 있다. 이를 위해 본 논문에서는 실시간 객체감지 기술인 YOLO-v3 알고리즘을 이용해서 PCB보드 인식, 분류할 수 있는 시스템을 개발하였다.

  • PDF

Privacy Protection using Adversarial AI Attack Techniques (적대적 AI 공격 기법을 활용한 프라이버시 보호)

  • Beom-Gi Lee;Hyun-A Noh;Yubin Choi;Seo-Young Lee;Gyuyoung Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.912-913
    • /
    • 2023
  • 이미지 처리에 관한 인공지능 모델의 발전에 따라 개인정보 유출 문제가 가속화되고 있다. 인공지능은 다방면으로 삶에 편리함을 제공하지만, 딥러닝 기술은 적대적 예제에 취약성을 보이기 때문에, 개인은 보안에 취약한 대상이 된다. 본 연구는 ResNet18 신경망 모델에 얼굴이미지를 학습시킨 후, Shadow Attack을 사용하여 입력 이미지에 대한 AI 분류 정확도를 의도적으로 저하시켜, 허가받지 않은 이미지의 인식율을 낮출 수 있도록 구현하였으며 그 성능을 실험을 통해 입증하였다.

Artificial Intelligence-based Security Control Construction and Countermeasures (인공지능기반 보안관제 구축 및 대응 방안)

  • Hong, Jun-Hyeok;Lee, Byoung Yup
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.531-540
    • /
    • 2021
  • As cyber attacks and crimes increase exponentially and hacking attacks become more intelligent and advanced, hacking attack methods and routes are evolving unpredictably and in real time. In order to reinforce the enemy's responsiveness, this study aims to propose a method for developing an artificial intelligence-based security control platform by building a next-generation security system using artificial intelligence to respond by self-learning, monitoring abnormal signs and blocking attacks.The artificial intelligence-based security control platform should be developed as the basis for data collection, data analysis, next-generation security system operation, and security system management. Big data base and control system, data collection step through external threat information, data analysis step of pre-processing and formalizing the collected data to perform positive/false detection and abnormal behavior analysis through deep learning-based algorithm, and analyzed data Through the operation of a security system of prevention, control, response, analysis, and organic circulation structure, the next generation security system to increase the scope and speed of handling new threats and to reinforce the identification of normal and abnormal behaviors, and management of the security threat response system, Harmful IP management, detection policy management, security business legal system management. Through this, we are trying to find a way to comprehensively analyze vast amounts of data and to respond preemptively in a short time.

Prediction of Hair Owners' Age using Hair Mineral Content and Artificial Intelligence (인공지능과 모발의 필수 미네랄 원소 함량을 이용한 피험자 연령 예측)

  • Park, Jun Hyeon;Ha, Byeong Jo;Park, Sangsoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.155-159
    • /
    • 2022
  • After artificial intelligence was trained with the data on the concentration of essential mineral elements in hair, the age was predicted by the concentration of mineral elements in the hair of the subject, and the result was compared with the actual age of the subject, and the correlation was investigated. The total number of hair data was 296, of which 2/3 were used for AI learning and 1/3 was used as the subject data. There was a correlation of 0. 678 between the actual age of the young subjects under the age of 25 and the age predicted by the AI. There was almost no correlation in the middle-aged subjects group, and there was a weak correlation of 0.522 in the elderly subject group. In order to secure the usefulness of artificial intelligence using hair mineral element concentration data, it is necessary to provide a larger number of data to the artificial intelligence.

Privacy-preserving Proptech using Domain Adaptation in Metaverse (메타버스 내 원격 부동산 중계 시스템을 위한 부동산 매물 영상 내 민감정보 삭제 기술)

  • Junho Kim;Jinhong Kim;Byeongjun Kang;Jaewon Choi;Jihoon Kim;Dongwoo Kang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.187-190
    • /
    • 2022
  • 본 논문은 메타버스 등 인공지능 연계 증강/가상현실 부동 중계 플랫폼에서 부동산 영상 기반 매물 소개 시스템 구축에서 사생활 및 개인정보가 영상에 담기게 될 수 있는 위험이 존재하기에 부동산 영상 내의 개인정보 및 민감 정보를 인공지능 기술을 기반으로 검출하여 삭제해주고 복원해주는 인공지능 기술 연구개발을 목표로 하였다. 한국형 부동산 내 민감 object 를 정의하고, 최신 인공지능 딥러닝 기술 기반 민감 object detection 알고리즘을 연구 개발하며, 영상에서 삭제된 부분은 인공지능 기술을 기반으로 물체가 없는 실제 공간영상으로 복원해주는 영상복원 기술도 연구 개발하였다. 한국형 부동산 환경 (영상 촬영 조도, 디스플레이 스타일, 주변 가구 배치 등)에 맞는 인공지능 모델 구축을 위하여, 자체적으로 한국 영상 database 구축 및 Transfer learning for target domain adaptation 을 진행하였다. 제안된 알고리즘은 일반적인 환경에서 98%의 정확도와 challenge 환경에서 (occlusion 빛 반사, 저조도 등) 81%의 정확도를 보였다. 본 기술은 Proptech 분야에서 주목받고 있는 메타버스 기반 온라인 중계 서비스 기술을 활성화하기 위하여 기획되었으며, 특히 메타버스 부동산 중계 플랫폼의 활성화를 위하여 사생활 보호 측면에서 필요한 중요 기술을 인공지능 기술을 활용하여 연구 개발하였다.

  • PDF

Development of Vehicle Queue Length Estimation Model Using Deep Learning (딥러닝을 활용한 차량대기길이 추정모형 개발)

  • Lee, Yong-Ju;Hwang, Jae-Seong;Kim, Soo-Hee;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.2
    • /
    • pp.39-57
    • /
    • 2018
  • The purpose of this study was to construct an artificial intelligence model that learns and estimates the relationship between vehicle queue length and link travel time in urban areas. The vehicle queue length estimation model is modeled by three models. First of all, classify whether vehicle queue is a link overflow and estimate the vehicle queue length in the link overflow and non-overflow situations. Deep learning model is implemented as Tensorflow. All models are based DNN structure, and network structure which shows minimum error after learning and testing is selected by diversifying hidden layer and node number. The accuracy of the vehicle queue link overflow classification model was 98%, and the error of the vehicle queue estimation model in case of non-overflow and overflow situation was less than 15% and less than 5%, respectively. The average error per link was about 12%. Compared with the detecting data-based method, the error was reduced by about 39%.