• Title/Summary/Keyword: 인공지능 활용 수학교육

Search Result 55, Processing Time 0.02 seconds

Understanding Elementary School Teachers' Intention to Use Artificial Intelligence in Mathematics Lesson Using TPACK and Technology Acceptance Model (TPACK과 기술수용모델을 활용한 초등교사의 수학 수업에서 인공지능 사용 의도 이해)

  • Son, Taekwon;Goo, Jongseo;Ahn, Doyeon
    • Education of Primary School Mathematics
    • /
    • v.26 no.3
    • /
    • pp.163-180
    • /
    • 2023
  • This study aimed to investigate the factors influencing the intentions of elementary school teachers to use artificial intelligence (AI) in mathematics lessons and to identify the essential prerequisites for the effective implementation of AI in mathematics education. To achieve this purpose, we examined the structural relationship between elementary school teachers' TPACK(Technological Pedagogical Content Knowledge) and the TAM(Technology Acceptance Model) using structural equation model. The findings of the study indicated that elementary school teachers' TPACK regarding the use of AI in mathematics instruction had a direct and significant impact on their perceived ease of use and perceived usefulness of AI. In other words, when teachers possessed a higher level of TPACK competency in utilizing AI in mathematics classes, they found it easier to incorporate AI technology and recognized it as a valuable tool to enhance students' mathematics learning experience. In addition, perceived ease of use and perceived usefulness directly influenced the attitudes of elementary school teachers towards the integration of AI in mathematics education. When teachers perceived AI as easy to use in their mathematics lessons, they were more likely to recognize its usefulness and develop a positive attitude towards its application in the classroom. Perceived ease of use, perceived usefulness, and attitude towards AI integration in mathematics classes had a direct impact on the intentions of elementary school teachers to use AI in their mathematics instruction. As teachers perceived AI as easy to use, valuable, and developed a positive attitude towards its incorporation, their intention to utilize AI in mathematics education increased. In conclusion, this study shed light on the factors influencing elementary school teachers' intentions to use AI in mathematics classes. It revealed that teachers' TPACK plays a crucial role in facilitating the integration of AI in mathematics education. Additionally, the study emphasized the significance of enhancing teachers' awareness of the advantages and convenience of using AI in mathematics instruction to foster positive attitudes and intentions towards its implementation. By understanding these factors, educational stakeholders can develop strategies to effectively promote the utilization of AI in mathematics education, ultimately enhancing students' learning outcomes.

Analysis of teaching and learning contents of matrix in German high school mathematics (독일 고등학교 수학에서 행렬 교수·학습 내용 분석)

  • Ahn, Eunkyung;Ko, Ho Kyoung
    • The Mathematical Education
    • /
    • v.62 no.2
    • /
    • pp.269-287
    • /
    • 2023
  • Matrix theory is widely used not only in mathematics, natural sciences, and engineering, but also in social sciences and artificial intelligence. In the 2009 revised mathematics curriculum, matrices were removed from high school math education to reduce the burden on students, but in anticipation of the age of artificial intelligence, they will be reintegrated into the 2022 revised education curriculum. Therefore, there is a need to analyze the matrix content covered in other countries to suggest a meaningful direction for matrix education and to derive implications for textbook composition. In this study, we analyzed the German mathematics curriculum and standard education curriculum, as well as the matrix units in the German Hesse state mathematics curriculum and textbook, and identified the characteristics of their content elements and development methods. As a result of our analysis, it was found that the German textbooks cover matrices in three categories: matrices for solving linear equations, matrices for explaining linear transformations, and matrices for explaining transition processes. It was also found that the emphasis was on mathematical reasoning and modeling when learning matrices. Based on these findings, we suggest that if matrices are to be reintegrated into school mathematics, the curriculum should focus on deep conceptual understanding, mathematical reasoning, and mathematical modeling in textbook composition.

An analysis of the use of technology tools in high school mathematics textbooks based (고등학교 수학 교과서의 공학 도구 활용 현황 분석)

  • Oh, Se Jun
    • Communications of Mathematical Education
    • /
    • v.38 no.2
    • /
    • pp.263-286
    • /
    • 2024
  • With the introduction of AI digital textbooks, interest in the use of technology tools in mathematics education is increasing. Technology tools have the advantage of visualizing mathematical concepts and discovering mathematical principles through experimentation and inquiry. The 2015 revised mathematics curriculum in Korea already mentions the use of technology tools, and accordingly, various teaching and learning activities using technology tools are presented in mathematics textbooks. However, there is still a lack of systematic analysis on the types and utilization methods of technology tools presented in textbooks. Therefore, this study analyzed the current status of the use of technology tools presented in high school mathematics textbooks based on the 2015 revised curriculum. To this end, the types of technology tools presented in mathematics textbooks were categorized, and the utilization ratio of each category was investigated. In addition, the utilization patterns of technology tools were analyzed by subject and content area, and the utilization ratio of technology tools according to the type of teaching and learning activities was examined. The results showed that technology tools were used in various types and ratios according to the subject and content area. In particular, technology tools in the symbol-manipulation graphing software category accounted for 58% of the total usage cases, showing the highest proportion. By subject, the use of symbol-manipulation graphing software was prominent in subjects dealing with the analysis area, while the use of dynamic geometry software was relatively high in the geometry area. In terms of teaching and learning activity types, the utilization ratio of auxiliary tool type (49%) and intended inquiry induction type (37%) was high. The results of this study show that technology tools play various roles in mathematics textbooks and provide useful implications for improving mathematics teaching and learning methods using technology tools in the future. Furthermore, it can contribute to the establishment of educational policies related to AI digital textbooks and the development of teacher training programs.

Effective ChatGPT Prompts in Mathematical Problem Solving : Focusing on Quadratic Equations and Quadratic Functions (수학 문제 해결에서 효과적인 ChatGPT의 프롬프트 고찰: 이차방정식과 이차함수를 중심으로)

  • Oh, Se Jun
    • Communications of Mathematical Education
    • /
    • v.37 no.3
    • /
    • pp.545-567
    • /
    • 2023
  • This study investigates effective ChatGPT prompts for solving mathematical problems, focusing on the chapters of quadratic equations and quadratic functions. A structured prompt was designed, following a sequence of 'Role-Rule-Example Solution-Problem-Process'. In this study, an artificial intelligence model combining GPT-4, Wolfram plugin, and Advanced Data Analysis was utilized. Wolfram was used as the primary tool for calculations to reduce computational errors. When using the structured prompt, the accuracy rate for problems from nine high school mathematics textbooks on quadratic equations and quadratic functions was 91%, showing higher performance compared to zero-shot prompts. This confirmed the effectiveness of the structured prompts in solving mathematical problems. The structured prompts designed in this study can contribute to the development of intelligent information systems for personalized and customized education.

A Study on Teaching the Method of Lagrange Multipliers in the Era of Digital Transformation (라그랑주 승수법의 교수·학습에 대한 소고: 라그랑주 승수법을 활용한 주성분 분석 사례)

  • Lee, Sang-Gu;Nam, Yun;Lee, Jae Hwa
    • Communications of Mathematical Education
    • /
    • v.37 no.1
    • /
    • pp.65-84
    • /
    • 2023
  • The method of Lagrange multipliers, one of the most fundamental algorithms for solving equality constrained optimization problems, has been widely used in basic mathematics for artificial intelligence (AI), linear algebra, optimization theory, and control theory. This method is an important tool that connects calculus and linear algebra. It is actively used in artificial intelligence algorithms including principal component analysis (PCA). Therefore, it is desired that instructors motivate students who first encounter this method in college calculus. In this paper, we provide an integrated perspective for instructors to teach the method of Lagrange multipliers effectively. First, we provide visualization materials and Python-based code, helping to understand the principle of this method. Second, we give a full explanation on the relation between Lagrange multiplier and eigenvalues of a matrix. Third, we give the proof of the first-order optimality condition, which is a fundamental of the method of Lagrange multipliers, and briefly introduce the generalized version of it in optimization. Finally, we give an example of PCA analysis on a real data. These materials can be utilized in class for teaching of the method of Lagrange multipliers.

Validation of the effectiveness of AI-Based Personalized Adaptive Learning: Focusing on basic math class cases (인공지능(AI) 기반 맞춤형 학습의 효과검증: 기초 수학수업 사례 중심으로)

  • Eunae Burm;Yeol-Eo Chun;Ji Youn Han
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.35-43
    • /
    • 2023
  • This study tried to find out the applicability and effectiveness of the AI-based adaptive learning system in university classes by operating an AI-based adaptive learning system on a pilot basis. To this end, an AI-based adaptive learning system was applied to analyze the operation results of 42 learners who participated in basic mathematics classes, and a survey and in-depth interviews were conducted with students and professors. As a result of the study, the use of an AI-based customized learning system improved students' academic achievement. Both instructors and learners seem to contribute to improving learning performance in basic concept learning, and through this, the AI-based adaptive learning system is expected to be an effective way to enhance self-directed learning and strengthen knowledge through concept learning. It is expected to be used as basic data related to the introduction and application of basic science subjects for AI-based adaptive learning systems. In the future, we suggest a strategy study on how to use the analyzed data and to verify the effect of linking the learning process and analyzed data provided to students in AI-based customized learning to face-to-face classes.

Analysis of Recognition and Needs for Parents in Elementary, Middle, and High Schools for Mathematics Education (초·중등 학부모 대상 수학교과 인식 및 요구 조사)

  • Lee, Hyeung Ju;Kim, Hyeongsik;Ko, Ho Kyoung
    • Communications of Mathematical Education
    • /
    • v.35 no.3
    • /
    • pp.213-231
    • /
    • 2021
  • This study is intended to investigate contents related to parents' perception and satisfaction level of school mathematics curriculum. Based on the results, this study intended to deduce implications for mathematics education in schools, child education, and parent education. According to the result of the survey, the more positively the parents perceived the value of the mathematics learning, the more positively the child perceived, and the higher the parent's participation rate in mathematics-related education was. In terms of perception of teaching and learning activities, it showed that the willingness to participate in educational programs was lower for the parents of middle and high school students than the parents of elementary school students and the parents of elementary school students also showed higher satisfaction level of school mathematics curriculum. parents have perceived the necessity of teaching and mathematics education to develop artificial intelligence or data analysis skills. It was also found that the parents of middle and high school students' participation experience in education had an effect on the satisfaction level of their children's math teacher's class preparedness. Parents perceived positively to how pragmatic mathematics curriculum can be and provided answers to what they wish in specific mathematics classes in learning methods and future mathematics learning. As this is for educational experts to consider much in-depth in the future, this study suggested the need for diverse parents' education related to mathematics including the expansion of mathematics education with parents' participation, the creation of a mathematics learning environment for future mathematics learning.

Introduction of AI digital textbooks in mathematics: Elementary school teachers' perceptions, needs, and challenges (수학 AI 디지털교과서의 도입: 초등학교 교사가 바라본 인식, 요구사항, 그리고 도전)

  • Kim, Somin;Lee, GiMa;Kim, Hee-jeong
    • Education of Primary School Mathematics
    • /
    • v.27 no.3
    • /
    • pp.199-226
    • /
    • 2024
  • In response to the era of transformation necessitating the introduction of Artificial Intelligence (AI) and digital technologies, educational innovation is undertaken with the implementation of AI digital textbooks in Mathematics, English, and Information subjects by 2025 in Korea. Within this context, this study analyzed the perceptions and needs of elementary school teachers regarding mathematics AI digital textbook. Based on a survey conducted in November 2023, involving 132 elementary school teachers across the country, the analysis revealed that the majority of elementary school teachers had a low perception of the introduction and need for mathematics AI digital textbooks. However, some recognized the potential for personalized learning and effective teaching support. Furthermore, among the core technologies of the AI digital textbook, teachers highly valued the necessity of learning diagnostics and teacher reconfiguration functions and had the most positive perception of their usefulness in math lessons, while their perception of interactivity was relatively low. These findings suggest the need for changing teachers' perceptions through professional development and information provision to ensure the successful adoption and use of mathematics AI digital textbooks. Specifically, providing concrete and practical ways to use the AI digital textbook, exploring alternatives to digital overload, and continuing development and research on core technologies.

Development and mathematical performance analysis of custom GPTs-Based chatbots (GPTs 기반 문제해결 맞춤형 챗봇 제작 및 수학적 성능 분석)

  • Kwon, Misun
    • Education of Primary School Mathematics
    • /
    • v.27 no.3
    • /
    • pp.303-320
    • /
    • 2024
  • This study presents the development and performance evaluation of a custom GPT-based chatbot tailored to provide solutions following Polya's problem-solving stages. A beta version of the chatbot was initially deployed to assess its mathematical capabilities, followed by iterative error identification and correction, leading to the final version. The completed chatbot demonstrated an accuracy rate of approximately 89.0%, correctly solving an average of 57.8 out of 65 image-based problems from a 6th-grade elementary mathematics textbook, reflecting a 4 percentage point improvement over the beta version. For a subset of 50 problems, where images were not critical for problem resolution, the chatbot achieved an accuracy rate of approximately 91.0%, solving an average of 45.5 problems correctly. Predominant errors included problem recognition issues, particularly with complex or poorly recognizable images, along with concept confusion and comprehension errors. The custom chatbot exhibited superior mathematical performance compared to the general-purpose ChatGPT. Additionally, its solution process can be adapted to various grade levels, facilitating personalized student instruction. The ease of chatbot creation and customization underscores its potential for diverse applications in mathematics education, such as individualized teacher support and personalized student guidance.

A Case Study on the Effect of the Artificial Intelligence Storytelling(AI+ST) Learning Method (인공지능 스토리텔링(AI+ST) 학습 효과에 관한 사례연구)

  • Yeo, Hyeon Deok;Kang, Hye-Kyung
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.5
    • /
    • pp.495-509
    • /
    • 2020
  • This study is a theoretical research to explore ways to effectively learn AI in the age of intelligent information driven by artificial intelligence (hereinafter referred to as AI). The emphasis is on presenting a teaching method to make AI education accessible not only to students majoring in mathematics, statistics, or computer science, but also to other majors such as humanities and social sciences and the general public. Given the need for 'Explainable AI(XAI: eXplainable AI)' and 'the importance of storytelling for a sensible and intelligent machine(AI)' by Patrick Winston at the MIT AI Institute [33], we can find the significance of research on AI storytelling learning model. To this end, we discuss the possibility through a pilot study targeting general students of an university in Daegu. First, we introduce the AI storytelling(AI+ST) learning method[30], and review the educational goals, the system of contents, the learning methodology and the use of new AI tools in the method. Then, the results of the learners are compared and analyzed, focusing on research questions: 1) Can the AI+ST learning method complement algorithm-driven or developer-centered learning methods? 2) Whether the AI+ST learning method is effective for students and thus help them to develop their AI comprehension, interest and application skills.