• Title/Summary/Keyword: 이중 802.11 WLAN

Search Result 23, Processing Time 0.024 seconds

Design of Dual-Band WLAN Transmitter with Frequency Doubler (주파수 체배기를 이용한 이중대역 무선 송신부 설계)

  • Roh, Hee-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.116-126
    • /
    • 2008
  • This paper describes the Dual-band WLAN transmitter with 2.4[GHz], 5[GHz]. Dual-band WLAN transmitter was designed at 2.4[GHz] and 5[GHz]. The Dual-band WLAN transmitter has a amplifier which operate at 2.4[GHz] and 5[GHz] frequency and two VCO(Voltage Controlled Oscillator) or VCO has a wide scope of frequency. these problem cause a size and a power consumption, The Dual-band WLAN transmitter module was proposed to solve these. the transmitter was designed to get output signals of IEEE 802.11a's 5.8[GHz] band signal using frequency multiplication way or to act a amplifier about the 2.4[GHz] band signal of IEEE 802.11b/g, according to inputed frequency and bias voltage that a eve using single transmission block. The output spectrum get the improved specification of ACPR of 4[dB], 6[dB], 16[dB] at +11[MHz], +20[MHz], +30[MHz] offset of center frequency compared to no linearization, was satisfied to transmit spectrum mask of IEEE 802.11a wireless Lan.

Design of microstrip antenna for Dual-band applications (이중대역용 마이크로스트립 안테나 설계)

  • Park, Sea-Pil;Kim, Kab-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.213-217
    • /
    • 2012
  • In this paper, we design dual-band microstrip antenna for IEEE 802.16e mobile WiMAX standard IEEE 802.11 WLAN band at the same time. To solve interference at the desired operating frequency band, impedance matching is improved and simple production method showed the characteristics of the omni-directional and compact size. The proposed structure is considered to bring the effect of the installation costs, and show the antenna for dual-band communication.

A New Bandwidth Allocation Scheme for Hard Real-time Communication on Dual IEEE 802.11 WLANs (이중 IEEE 802.11 WLAN에서 경성 실시간 통신을 위한 대역폭 할당)

  • Lee, Jung-Hoon;Kang, Mi-Kyung
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.5
    • /
    • pp.633-640
    • /
    • 2005
  • This paper proposes and analyzes a message scheduling scheme and corresponding bandwidth allocation method for the hard real-time communication on dual standard 802.11 Wireless LANs. By making the superframeof one network precede that of the other by half, the dual network architecture can minimize the effect of deferred beacon and reduce the worst case waiting timeby half. The effect of deferred beacon is formalized and directly considered to decide the polling schedule of PCF phase. Simulation results executed via ns-2 show that the proposed scheme can improve the schedulability by 3$36\%$ for real-time messages and give $9\%$ more bandwidth to non-real-time messages for the given stream sets, compared with the network whose bandwidth is just doubled with the same MAC.

Implementation of the Dual Band Chip Antenna for WLAN (WLAN용 이중대역 칩 안테나 구현)

  • Kang, Jeong-Jin;Lee, Young-Dae;Rho, Kyung-Taeg;Choi, Jong-In
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.1
    • /
    • pp.103-107
    • /
    • 2009
  • In this paper, we designed and implemented a dual band chip antenna for WLAN, which contains within the small LAN card contrary to the enternal AP(Access Point) antenna. Limiting about the antenna size, we used dielectrics of high permittivity. Totally considering problems of demand-supply, price and characteristics, we used that relative dielectrics of ceramic is 9.8 and the thickness is 3.5mm and 5mm. Ceramic antenna can be used not only triple mode of IEEE 802.11.a,g and b but also broadband. The frequency bands have wideband characteristics of 2.4~2.5GHz and 4.9~5.85GHz and relatively constant performance.

  • PDF

Design and Fabrication of Dual-Band Patch Antenna with Bridge for WLAN Applications (WLAN용 이중대역 브리지 패치 안테나설계 및 제작)

  • Kim, Kab-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.547-551
    • /
    • 2010
  • In this paper, Double rectangular patch with 4-bridges is investigated for solution of IEEE 802.11b/g(2.4GHz) and 802.11a(5.7GHz). Rectangular patch for 5.7GHz frequency band is printed on the PCB substrate and connected to another rectangular patch for 2.4GHz frequency band with 4-bridges to obtain dual band operation in a antenna element. The proposed antenna has a low profile and is fed by $50{\Omega}$ coaxial line. The dielectric constant of the designed antenna substrate is 3.27. Two rectangular patches have each resonance frequencies that are 2.4GHz and 5.7GHz. A dual-band characteristic is shown as connecting two rectangular patch using four bridges. Also, the proposed antenna is shown input return loss that is below -10dB at 2.4GHz and 5.7GHz of WLAN(Wireless LAN).

Design of Wideband Planar Inverted-F Antenna Using Two-Layer Patches and Modified Ground Structure (이중층 패치와 부분 제거된 접지면을 이용한 광대역 평판형 역 F 안테나의 설계)

  • Lee, Kwang-Jae;Lee, Young-Hee;Kang, Yeon-Duk;Lee, Taek-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.9
    • /
    • pp.1015-1022
    • /
    • 2007
  • In this paper, we proposed a wideband design of planar inverted-F antenna(PIFA) using two-layer, patches and modified ground structure. The antenna consists of two layer patches with common feed and modified ground plane to control resonance frequency and antenna input impedance. The measured bandwidth is 1,492 MHz(BW: 67.7 %, 1,457${\sim}2,949$ MHz) for VSWR<2, and 1,170 MHz(BW: 21 %, 4,970${\sim}$6,140 MHz) for VSWR<2.5. It covers service bands of DCS1800, DCS1900, UMTS(WCDMA), WiBro, WLAN(IEEE 802.11b), satellite DMB. WLAN(IEEE 802.11a) in Korea and radiation patterns shows constant figure with frequency change.

Priority Polling and Dual Token Bucket based HCCA Algorithm for IEEE 802.11e WLAN (IEEE 802.11e WLAN을 위한 우선순위 폴링 및 이중 토큰 버킷 기반의 HCCA 알고리즘)

  • Lee, Dong-Yul;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.4
    • /
    • pp.31-41
    • /
    • 2009
  • IEEE 802.11e proposed by IEEE 802.11 working group to guarantee QoS has contention based EDCA and contention free based HCCA. HCCA, a centralized polling based mechanism of 802.11e, needs a scheduling algorithm to allocate the network resource efficiently. The existing standard scheduler, however, is inefficient to support for QoS guarantee for real-time service having VBR traffic. To improve these limit, in this paper, we First, we propose priority polling algorithm which additionally considers the size of MSI and TXOP based on EDD algorithm to increase number of QSTAs. We also propose a dual token bucket TXOP allocation algorithm to reduce congestion caused by stations which enters network with considerable delay variance. TSPEC parameters, Maximum Burst Size (MBS) and Peak Data Rate (PR), are applied to design depth and token generation rate of two buckets. Simulation results show that the proposed algorithm has much higher performance compared with reference and SETT-EDD scheduler in terms of throughput and delay.

Double Square Patch Antenna with Inductive Bridges for WLAN Dual-Band (인덕티브 브릿지를 가진 WLAN 이중 대역 이중 사각 패치 안테나)

  • Yang, Chan-Woo;Jung, Chang-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2615-2618
    • /
    • 2009
  • Double rectangular patch with 4-bridges is investigated for solution of IEEE 802.11b/g (2.4 GHz) and 802.11a (5.5 GHz). Rectangular patch for 5.5 GHz frequency band is printed on the PCB substrate and connected to another rectangular patch for 2.4 GHz frequency band with 4-bridges to obtain dual band operation in an antenna element. 4-bridges can modify the desired frequency band from its original frequency band by changing its width. Gain of 2.4 GHz patch is 5 dBi and 5.5 GHz patch is 3.7 dBi at ${\theta}=0^{\circ}$.

Design and Fabrication of a Dual-Band Bandpass Filter Using a Dual-Mode Ring Resonator with Two Short-Circuited Stubs for WLAN Application (두 단락 스터브를 갖는 이중 모드 링 공진기를 이용한 WLAN용 이중대역 대역통과 여파기의 설계 및 제작)

  • Choi, Byung-Chang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.9
    • /
    • pp.814-820
    • /
    • 2015
  • In this paper, A high selective dual-band bandpass filter was proposed using a dual-mode ring resonator with two short-circuited stubs. For dual-mode resonance, the ring resonator is directly connected with non-orthogonal feed-lines via coupling capacitors. Two short-circuited stubs which are unequal lengths are simultaneously placed at two corners along the two symmetry plane of the ring resonator in order to obtain dual-band responses. Because the feeding angle perturbated ring resonator of the proposed dual-band bandpass filter has the symmetrical structure, Even/Odd mode analysis can be well applied to extract the scattering parameters and transmission zero frequencies. The proposed dual-band bandpass filter was designed and fabricated for WLAN(Wireless Local Area Network) application of IEEE 802.11n standard. The measured results showed a good agreement with the simulation results, and it should be well applied not only for WLAN applications but also for any other communication systems.

A 2.3-2.7 GHz Dual-Mode RF Receiver for WLAN and Mobile WiMAX Applications in $0.13{\mu}m$ CMOS (WLAN 및 Mobile WiMAX를 위한 2.3-2.7 GHz 대역 이중모드 CMOS RF 수신기)

  • Lee, Seong-Ku;Kim, Jong-Sik;Kim, Young-Cho;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.3
    • /
    • pp.51-57
    • /
    • 2010
  • A dual-mode direct conversion receiver is developed in $0.13\;{\mu}m$ RF CMOS process for IEEE 802.11n based wireless LAN and IEEE 802.16e based mobile WiMAX application. The RF receiver covers the frequency band between 2.3 and 2.7 GHz. Three-step gain control is realized in LNA by using current steering technique. Current bleeding technique is applied to the down-conversion mixer in order to lower the flicker noise. A frequency divide-by-2 circuit is included in the receiver for LO I/Q differential signal generation. The receiver consumes 56 mA at 1.4 V supply voltage including all LO buffers. Measured results show a power gain of 32 dB, a noise figure of 4.8 dB, a output $P_{1dB}$ of +6 dBm over the entire band.