• 제목/요약/키워드: 이송 최적화

Search Result 116, Processing Time 0.031 seconds

Integrated Design of Feed Drive Systems Using Discrete 2-D.O.F. Controllers (I) - Modeling and Performance Analysis - (이산형 2자유도 제어기를 이용한 이송계의 통합설계 (I) -모델링 및 성능해석-)

  • Kim, Min-Seok;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1029-1037
    • /
    • 2004
  • High-speed/precision servomechanisms have been widely used in the manufacturing and semiconductor industries. In order to ensure the required high-speed and high-precision specifications in servomechanisms, an integrated design methodology is required, where the interactions between mechanical and electrical subsystems will have to be considered simultaneously. For the first step of the integrated design process, it is necessary to obtain not only strict mathematical models of separate subsystems but also formulation of an integrated design problem. A two-degree-of-freedom controller described in the discrete-time domain is considered as an electrical subsystem in this paper. An accurate identification process of the mechanical subsystem is conducted to verify the obtained mathematical model. Mechanical and electrical constraints render the integrated design problem accurate. Analysis of the system performance according to design and operating parameters is conducted for better understanding of the dynamic behavior and interactions of the servomechanism. Experiments are performed to verify the validity of the integrated design problem in the x-Y positioning system.

Multi-step Optimization of the Moving Body for the High Speed Machinining Center using Weighted Method and G.A. (가중치방법과 유전알고리즘을 이용한 금형가공센터 고속이송체의 다단계 최적설계)

  • 최영휴;배병태;강영진;이재윤;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.23-27
    • /
    • 1997
  • This paper introduces the structural design optimization of a high speed machining center using multi-step optimization combined with G.A.(Genetic Algorithm) and Weighted Method. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. Dimensional thicknesses of the thirteen structural members of the machine structure are adopted as design variables. The first step is the cross-section configuration optimization, in which the area moment of inertia of the cross-section for each structural member is maximized while its area is kept constant The second step is a static design optimization, In which the static compliance and the weight of the machine structure are minimized under some dimensional and safety constraints. The third step IS a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints. After optunization, static and dynamic compliances were reduced to 62.3% and 95.7% Eorn the initial design, while the weight of the moving bodies are also in the feaslble range.

  • PDF

Optimal Parameter Tuning to Compensate for Radius Errors (반경오차 보정을 위한 최적파라미터 튜닝)

  • 김민석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.629-634
    • /
    • 2000
  • Generally, the accuracy of motion control systems is strongly influenced by both the mechanical characteristics and servo characteristics of feed drive systems. In the fed drive systems of machine tools that consist of mechanical parts and electrical parts, a torsional vibration is often generated because of its elastic elements in torque transmission. Especially, a torsional vibration caused by the elasticity of mechanical elements might deteriorate the quick movement of system and lead to shorten the life time of the mechanical transmission elements. So it is necessary to analyze the electromechanical system mathematically to optimize the dynamic characteristics of the feed drive system. In this paper, based on the simplifies feed drive system model, radius errors due to position gain mismatch and servo response characteristic have been developed and an optimal criterion for tuning the gain of speed controller is discussed. The proportional and integral parameter gain of the feed drive controller are optimal design variables for the gain tuning of PI speed controller. Through the optimization problem formulation, both proportional and integral parameter are optimally tuned so as to compensate the radius errors by using the genetic algorithm. As a result, higher performance on circular profile tests has been achieved than the one with standard parameters.

  • PDF

Object Recognition Technology using LiDAR Sensor for Obstacle Detection of Agricultural Autonomous Robot (LiDAR 센서 활용 객체 인식기술이 적용된 농업용 자율주행 이송 로봇 개발)

  • Kim, Jong-Sil;Ju, Yeong-Tae;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.565-570
    • /
    • 2021
  • Agriculture in South Korea is losing productivity due to the lack of manpower as aging population increases. To overcome this, the agricultural robot market is growing rapidly, and research is being conducted on remote control and autonomous driving of agricultural robots. This work designs the appearance and structure of agricultural robots and implements the devices and control systems for driving. By utilizing and optimizing LiDAR sensors, we applied object recognition technology, which is an essential function for autonomous driving. This can reduce labor costs and improve productivity of transportation tasks that require the most labor in agriculture.

Comparative assessment of ensemble kalman filtering and particle filtering for lumped hydrologic modeling (집중형 수문모형에 대한 앙상블 칼만필터와 파티클 필터의 수문자료동화 특성 비교)

  • Garim Lee;Bomi Kim;Songhee Lee;Seong Jin Noh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.233-233
    • /
    • 2023
  • 효율적인 수자원 관리에 필수적인 요소 중 하나는 유역 유출의 정확한 예측이다. 동일한 유역이라 할지라도 과거 기후조건에 대해 매개변수나 모형구조가 최적화된 수문모형은 현재나 미래 기후에 대해 최적이라 할수 없으며, 이에 따라 유역 유출 해석의 불확실성 또한 증가하고 있다. 수문자료동화는 모형의 입력 자료에 따른 불확실성을 줄이고 예측정확도를 향상 시킬 수 있는 방법으로, 수문모형의 상태량이나 매개변수를 업데이트하여 모형 초기 조건의 가능성 높은 추정치를 생성하는 기법이다. 본 연구에서는 국내 댐 상류 유역에 대해 집중형 수문모형과 순차자료동화 기법의 연계 패키지인 airGRdatassim 모형을 적용하여, 앙상블 칼만 필터와 파티클 필터 기법의 수문자료동화 특성을 비교 분석하고, 자료동화와 관련된 하이퍼-매개변수의 불확실성이 수문모의 성능에 미치는 영향을 분석하였다. 자료동화 적용 결과, 두 자료동화 기법 중 파티클 필터에 의한 모의성능이 높았으며 기상강제력 노이즈의 범위, 갱신 대상 상태량 설정, 앙상블 설정 등 수문자료동화의 설정과 관련된 하이퍼 매개변수의 불확실성은 두 기법별 뚜렷한 차이를 보였다. 또한, 본 연구에서는 일단위에서 시단위로 확장한 유량 예측 자료동화의 시험 모의결과 및 앙상블 수문동화기법의 도전과제에 대해서도 논의한다.

  • PDF

Current Status and Management Plan of the Bed Material Management System (하상재료관리시스템 구축 현황 및 관리방안)

  • Lee, Han Yong;Lee, Sung Ho;Kim, Seon Woo;Lee, Chung Dea
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.432-432
    • /
    • 2022
  • 하천의 하상재료는 토양 유실량 및 유사량 산정, 유사이송, 하상변동, 하천환경 등 여러 분야에 영향을 미친다. 하상재료는 강수 및 유량 등 여러특성들의 상호작용으로 인해 지속적으로 변화하며, 하천 분야의 각종 해석 및 영향 평가 등에 이용되는 활용성을 감안하여 하상재료는 체계적인 관리시스템이 필요하다고 판단된다. 효율적인 하상재료 관리를 위하여 한국수자원조사기술에서 수행한 하천유역조사, 유사량조사, 하도변화 모니터링 사업을 통해 수집된 자료를 활용하였다. 국내 109개 하천(한강권역 39개 하천, 낙동강권역 23개 하천, 금강 34개 하천, 섬진강 5개 하천, 영산강 8개 하천)에 대한 자료를 수집하고 분석하여 하상재료관리시스템(Bed Material Management System, BMMS)을 구축하였다. BMMS는 GIS 기반으로 구축된 시스템으로 관리, 표출 및 분석이 가능하며 하상재료의 위치정보, 하상재료 성분비 및 유효경 등 총 11개로 구성되어 있다. 하상재료조사는 시료채취 방법과 표층조사 방법으로 조사하였으며, 시료채취는 체가름 시험과 비중 시험을 이용하였고 표층조사는 BASEGRAIN 프로그램을 이용한 표층 영상분석을 통해 입도분포, 입경가적곡선 등을 나타내었다. 향후 이용자의 편의성을 위한 방안을 모색 중에 있으며, 하천별 하상재료 분석자료를 정기적으로 축척하여 국내 하천의 지역적 특성을 고려한 매개변수 산정 및 최적화에 도움이 될 것이라 판단된다.

  • PDF

The Development of Image Processing System Using Area Camera for Feeding Lumber (영역카메라를 이용한 이송중인 제재목의 화상처리시스템 개발)

  • Kim, Byung Nam;Lee, Hyoung Woo;Kim, Kwang Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.37-47
    • /
    • 2009
  • For the inspection of wood, machine vision is the most common automated inspection method used at present. It is required to sort wood products by grade and to locate surface defects prior to cut-up. Many different sensing methods have been applied to inspection of wood including optical, ultrasonic, X-ray sensing in the wood industry. Nowadays the scanning system mainly employs CCD line-scan camera to meet the needs of accurate detection of lumber defects and real-time image processing. But this system needs exact feeding system and low deviation of lumber thickness. In this study low cost CCD area sensor was used for the development of image processing system for lumber being fed. When domestic red pine being fed on the conveyer belt, lumber images of irregular term of captured area were acquired because belt conveyor slipped between belt and roller. To overcome incorrect image merging by the unstable feeding speed of belt conveyor, it was applied template matching algorithm which was a measure of the similarity between the pattern of current image and the next one. Feeding the lumber over 13.8 m/min, general area sensor generates unreadable image pattern by the motion blur. The red channel of RGB filter showed a good performance for removing background of the green conveyor belt from merged image. Threshold value reduction method that was a image-based thresholding algorithm performed well for knot detection.

A Process Optimization of HVOF on ALBC3 by Experiments Design (실험계획법을 이용한 ALBC3에 대한 고속화염용사의 최적 공정 설계)

  • Kim, Young-Moon;Lim, Byung-Chul;Kim, Min-Tae;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.448-453
    • /
    • 2016
  • Erosion and abrasion caused by cavitation damage occur in fluid equipment, such as ships or impellers. Similarly, the equipment damage from noise and vibration can shorten its life. This study analyzed the importance of the parameter characteristics of the process optimization of HVOF (High Velocity Oxygen Fuel spraying), which is generally used in a variety of industries for enhancing the resistibility from the cavitation phenomenon. The surface of the ALBC3 substrate was coated with an amorphous powder as a filler metal according to the experimental design using the Taguchi method, and then the characteristics with each parameter were analyzed using a porosity measurement test. The optimal process conditions was a combustion pressure of 80psi, coating distance of 270mm, gun speed of 200mm/s, and powder feed rate of 25g/min as a result of the HVOF coating by applying the experimental design. The combustion pressure, coating distance and powder feed rate were more than 25% and indicated a similar contribution rate, but the contribution rate of the gun speed was 19%, which was slightly less than the others. The contribution rate with each parameter was only slightly significant. On the other hand, all four parameters were found to be important in the contribution rate aspects of the HVOF coating process.

Development of arc plasma for removal of high concentration VOCs (고온 아크 플라즈마를 이용한 고농도 VOCs 제거 기술 개발)

  • Hong, Seung Hyouk;Kim, Jae Gang;Lee, Joo Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.108-115
    • /
    • 2017
  • Generally, there are three ways to remove VOCs from the small painting booth; adsorption, burn and oxidation catalyst. RTO and RCO are high efficiency methods for removing VOCs. But they require large installation areas, which are not suitable for the small painting booth. And we need a new removing method because it is difficult to predict the A/C changing time and the recycle time. To solve these problems, we have developed the Arc plasma system which is simple and enable consecutive-use. It removes VOCs effectively and eco-friendly. In this study we have investigated the enrichment material and VOCs removal efficiency.

Development of in-situ Analysis System for Radwaste Glass Using Laser Induced Breakdown Spectroscopy (레이저유도 플라즈마분광법을 이용한 방사성폐기물 유리의 현장분석 시스템 개발)

  • 김천우;박종길;신상운;하종현;송명재;이계호
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.137-146
    • /
    • 2004
  • Laser Induced Breakdown Spectroscopy(LIBS) system is being developed as an in-situ analysis system for the radioactive waste glass in the cold crucible melter. In order to complete the LIBS system, a spectrometer, a detector, and a laser were structured. An ESA 3000 (LLA Instruments GmbH, Germany) including a calibrated Kodak KAF-1001 CCD detector was selected as the spectrometer. A Q-switched Nd-YAG Brilliant(Quantel, France) laser was selected as an energy source. As the first research stage, the excitation temperatures of Fe(I) as a function of the detector's delay intervals(500, 1000, 1500, 2000ns) were evaluated using the Einstein-Boltzmann equation. The optimized excitation temperature of Fe (I) was 7820k at the delay time of 1500㎱ using the 532nm Nd-YAG laser pulse. This LIBS system will be optimized under the real environment vitrification facility in the near future and then used to be in-situ analyzed the glass compositions in the melter qualitatively.

  • PDF