DOI QR코드

DOI QR Code

Object Recognition Technology using LiDAR Sensor for Obstacle Detection of Agricultural Autonomous Robot

LiDAR 센서 활용 객체 인식기술이 적용된 농업용 자율주행 이송 로봇 개발

  • 김종실 (순천대학교 컴퓨터공학과) ;
  • 주영태 (순천대학교 컴퓨터공학과) ;
  • 김응곤 (순천대학교 컴퓨터공학과)
  • Received : 2021.04.19
  • Accepted : 2021.06.17
  • Published : 2021.06.30

Abstract

Agriculture in South Korea is losing productivity due to the lack of manpower as aging population increases. To overcome this, the agricultural robot market is growing rapidly, and research is being conducted on remote control and autonomous driving of agricultural robots. This work designs the appearance and structure of agricultural robots and implements the devices and control systems for driving. By utilizing and optimizing LiDAR sensors, we applied object recognition technology, which is an essential function for autonomous driving. This can reduce labor costs and improve productivity of transportation tasks that require the most labor in agriculture.

우리나라 농업은 고령화로 인해 인력이 부족해 생산성이 감소하고 있다. 이를 극복하기 위해 농업용 로봇 시장이 빠르게 성장하고 있으며 농업용 로봇의 원격제어와 자율주행에 관한 연구가 진행되고 있다. 본 연구는 농업용 로봇의 외형 및 구조를 설계하고 구동을 위한 장치 및 제어시스템을 구현하였다. LiDAR 센서를 활용, 최적화해 자율주행을 위한 필수 기능인 객체 인식기술을 적용하였다. 이를 통해 농업에서 노동력이 가장 많이 필요한 운송작업의 인건비 절감과 더불어 생산성을 향상 시킬 수 있다.

Keywords

Acknowledgement

본 연구는 중소벤처기업부와 한국산업기술진흥원의 "지역특화산업육성+(R&D, S2912130)"사업의 지원을 받아 수행된 연구결과임.

References

  1. Statistics Korea, "Agriculture, Forestry and Fishery Survey in 2018," Press Release, 2018.
  2. J. Jeong and S. Hyun, "AI+ Add Intelligence to Future Society(Agriculture)," National Information Society Agency, 2017.
  3. T. Kim, Y. Kim, H. Jeong, Y. Kim, and Y. Park, "Study of Autonomous Navigation for Path Guide System Using RFID," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 1, 2019, pp. 213-218. https://doi.org/10.13067/JKIECS.2019.14.1.213
  4. H. Park, J. Kwon, T. Hwang, and D. Kim, "A Development of Effective Object Detection System Using Multi-Device LiDAR Sensorin Vehicle Driving Environment," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 2, 2018, pp. 313-320. https://doi.org/10.13067/JKIECS.2018.13.2.313
  5. Y. Lee and Y. Ryoo, "Manual and Automatic Steering System Using Pulley and Electrical Clutch for Manned and Unmanned Electric Vehicle," J. of Korean institute of intelligent systems, vol. 22, no. 5, 2012, pp. 597-602. https://doi.org/10.5391/JKIIS.2012.22.5.597
  6. J. Park and K. Choi, "Overview of Sensor Fusion Techniques for Vehicle Positioning," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 2, 2016, pp. 139-144. https://doi.org/10.13067/JKIECS.2016.11.2.139
  7. S. Kwon and T. Park, "Polar-View Based Object Detection Algorithm Using 3D Low-Channel Lidar," J. of the institute of control robotics and systems, vol. 25, no. 1, 2019, pp. 56-62. https://doi.org/10.5302/j.icros.2019.18.0185
  8. S. Bae, H. Choi, and K. Jung, "YOLO Model FPS Enhancement Method for Determining Human Facial Expression based on NVIDIA Jetson TX1," J. of the Korea Institute of Information, electronics, and Communication Technology, vol. 12, no. 5, 2019, pp. 467-474.
  9. P. Chen, Y. Shi, Q. Zheng, and Q. Wu, "State-of-the-art of Object Detection Model Based on YOLO," In Proc. IEEE Int. Conf. Communications, Xi'an, China, Sept. 2020, pp. 101-105.
  10. M. Kim, S. Bae, and H. Kim, "Real-Time 3D-LiDAR Object Detection in Autonomous Vehicle Systems Using Cluster-Based Candidates and Deep Learning," J. of the institute of control robotics and systems, vol. 25, no. 9, 2019, pp. 795-801. https://doi.org/10.5302/J.ICROS.2019.0120