• Title, Summary, Keyword: Object Recognition

Search Result 1,375, Processing Time 0.053 seconds

A Research on the Measurement of Human Factor Algorithm 3D Object (3차원 영상 객체 휴먼팩터 알고리즘 측정에 관한 연구)

  • Choi, Byungkwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.2
    • /
    • pp.35-47
    • /
    • 2018
  • The 4th industrial revolution, digital image technology has developed beyond the limit of multimedia industry to advanced IT fusion and composite industry. Particularly, application technology related to HCI element algorithm in 3D image object recognition field is actively developed. 3D image object recognition technology evolved into intelligent image sensing and recognition technology through 3D modeling. In particular, image recognition technology has been actively studied in image processing using object recognition recognition processing, face recognition, object recognition, and 3D object recognition. In this paper, we propose a research method of human factor 3D image recognition technology applying human factor algorithm for 3D object recognition. 1. Methods of 3D object recognition using 3D modeling, image system analysis, design and human cognitive technology analysis 2. We propose a 3D object recognition parameter estimation method using FACS algorithm and optimal object recognition measurement method. In this paper, we propose a method to effectively evaluate psychological research techniques using 3D image objects. We studied the 3D 3D recognition and applied the result to the object recognition element to extract and study the characteristic points of the recognition technology.

Using a Multi-Faced Technique SPFACS Video Object Design Analysis of The AAM Algorithm Applies Smile Detection (다면기법 SPFACS 영상객체를 이용한 AAM 알고리즘 적용 미소검출 설계 분석)

  • Choi, Byungkwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.99-112
    • /
    • 2015
  • Digital imaging technology has advanced beyond the limits of the multimedia industry IT convergence, and to develop a complex industry, particularly in the field of object recognition, face smart-phones associated with various Application technology are being actively researched. Recently, face recognition technology is evolving into an intelligent object recognition through image recognition technology, detection technology, the detection object recognition through image recognition processing techniques applied technology is applied to the IP camera through the 3D image object recognition technology Face Recognition been actively studied. In this paper, we first look at the essential human factor, technical factors and trends about the technology of the human object recognition based SPFACS(Smile Progress Facial Action Coding System)study measures the smile detection technology recognizes multi-faceted object recognition. Study Method: 1)Human cognitive skills necessary to analyze the 3D object imaging system was designed. 2)3D object recognition, face detection parameter identification and optimal measurement method using the AAM algorithm inside the proposals and 3)Face recognition objects (Face recognition Technology) to apply the result to the recognition of the person's teeth area detecting expression recognition demonstrated by the effect of extracting the feature points.

A Study On Parameter Measurement for Artificial Intelligence Object Recognition (인공지능 객체인식에 관한 파라미터 측정 연구)

  • Choi, Byung Kwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.3
    • /
    • pp.15-28
    • /
    • 2019
  • Artificial intelligence is evolving rapidly in the ICT field, smart convergence media system and content industry through the fourth industrial revolution, and it is evolving very rapidly through Big Data. In this paper, we propose a face recognition method based on object recognition based on object recognition through artificial intelligence. In this method, Were experimented and studied through the object recognition technique of artificial intelligence. In the conventional 3D image field, general research on object recognition has been carried out variously, and researches have been conducted on the side effects of visual fatigue and dizziness through 3D image. However, in this study, we tried to solve the problem caused by the quantitative difference between object recognition and object recognition for human factor algorithm that measure visual fatigue through cognitive function, morphological analysis and object recognition. Especially, The new method of computer interaction is presented and the results are shown through experiments.

ASM Algorithm Applid to Image Object spFACS Study on Face Recognition (영상객체 spFACS ASM 알고리즘을 적용한 얼굴인식에 관한 연구)

  • Choi, Byungkwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.1-12
    • /
    • 2016
  • Digital imaging technology has developed into a state-of-the-art IT convergence, composite industry beyond the limits of the multimedia industry, especially in the field of smart object recognition, face - Application developed various techniques have been actively studied in conjunction with the phone. Recently, face recognition technology through the object recognition technology and evolved into intelligent video detection recognition technology, image recognition technology object detection recognition process applies to skills through is applied to the IP camera, the image object recognition technology with face recognition and active research have. In this paper, we first propose the necessary technical elements of the human factor technology trends and look at the human object recognition based spFACS (Smile Progress Facial Action Coding System) for detecting smiles study plan of the image recognition technology recognizes objects. Study scheme 1). ASM algorithm. By suggesting ways to effectively evaluate psychological research skills through the image object 2). By applying the result via the face recognition object to the tooth area it is detected in accordance with the recognized facial expression recognition of a person demonstrated the effect of extracting the feature points.

Object Recognition of Robot Using 3D RFID System

  • Roh, Se-Gon;Park, Jin-Ho;Lee, Young-Hoon;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.62-67
    • /
    • 2005
  • Object recognition in the field of robotics generally has depended on a computer vision system. Recently, RFID(Radio Frequency IDentification) technology has been suggested to support recognition and has been rapidly and widely applied. This paper introduces the more advanced RFID-based recognition. A novel tag named 3D tag, which facilitates the understanding of the object, was designed. The previous RFID-based system only detects the existence of the object, and therefore, the system should find the object and had to carry out a complex process such as pattern match to identify the object. 3D tag, however, not only detects the existence of the object as well as other tags, but also estimates the orientation and position of the object. These characteristics of 3D tag allows the robot to considerably reduce its dependence on other sensors required for object recognition the object. In this paper, we analyze the 3D tag's detection characteristic and the position and orientation estimation algorithm of the 3D tag-based RFID system.

  • PDF

Differential Effects of Scopolamine on Memory Processes in the Object Recognition Test and the Morris Water Maze Test in Mice

  • Kim, Dong-Hyun;Ryu, Jong-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.16 no.3
    • /
    • pp.173-178
    • /
    • 2008
  • Several lines of evidence indicate that scopolamine as a nonselective muscarinic antagonist disrupts object recognition performance and spatial working memory when administered systemically. In the present study, we investigated the different effects of scopolamine on acquisition, consolidation, and retrieval phases of object recognition performance and spatial working memory using the object recognition and the Morris water maze tasks in mice. In the acquisition phase test, scopolamine decreased recognition index on object recognition task and the trial 1 to trial 2 differences on Morris water maze task. In the consolidation and retrieval phase tests, scopolamine also decreased recognition index on object recognition task, where as scopolamine did not exhibited any effects on the Morris water maze task.

Object Recognition Algorithm with Partial Information

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.229-235
    • /
    • 2019
  • Due to the development of video and optical technology today, video equipments are being used in a variety of fields such as identification, security maintenance, and factory automation systems that generate products. In this paper, we investigate an algorithm that effectively recognizes an experimental object in an input image with a partial problem due to the mechanical problem of the input imaging device. The object recognition algorithm proposed in this paper moves and rotates the vertices constituting the outline of the experimental object to the positions of the respective vertices constituting the outline of the DB model. Then, the discordance values between the moved and rotated experimental object and the corresponding DB model are calculated, and the minimum discordance value is selected. This minimum value is the final discordance value between the experimental object and the corresponding DB model, and the DB model with the minimum discordance value is selected as the recognition result for the experimental object. The proposed object recognition method obtains satisfactory recognition results using only partial information of the experimental object.

Object Recognition Using 3D RFID System (3D REID 시스템을 이용한 사물 인식)

  • Roh Se-gon;Lee Young Hoon;Choi Hyouk Ryeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1027-1038
    • /
    • 2005
  • Object recognition in the field of robotics generally has depended on a computer vision system. Recently, RFID(Radio Frequency IDentification) has been suggested as technology that supports object recognition. This paper, introduces the advanced RFID-based recognition using a novel tag which is named a 3D tag. The 3D tag was designed to facilitate object recognition. The proposed RFID system not only detects the existence of an object, but also estimates the orientation and position of the object. These characteristics allow the robot to reduce considerably its dependence on other sensors for object recognition. In this paper, we analyze the characteristics of the 3D tag-based RFID system. In addition, the estimation methods of position and orientation using the system are discussed.

Object Recognition using Comparison of External Boundary

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.134-142
    • /
    • 2019
  • As the 4th industry has been widely distributed, there is a need for a process of real-time image recognition in various fields such as identification of company employees, security maintenance, and development of military weapons. Therefore, in this paper, we will propose an algorithm that effectively recognizes a test object by comparing it with the DB model. The proposed object recognition system first expresses the outline of the test object as a set of vertices with the distances of predefined length or more. Then, the degree of matching of the structures of the two objects is calculated by examining the distances to the outline of the DB model from the vertices constituting the test object. Because the proposed recognition algorithm uses the outline of the object, the recognition process is easy to understand, simple to implement, and a satisfactory recognition result is obtained.

Covariance-based Recognition Using Machine Learning Model

  • Osman, Hassab Elgawi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • /
    • pp.223-228
    • /
    • 2009
  • We propose an on-line machine learning approach for object recognition, where new images are continuously added and the recognition decision is made without delay. Random forest (RF) classifier has been extensively used as a generative model for classification and regression applications. We extend this technique for the task of building incremental component-based detector. First we employ object descriptor model based on bag of covariance matrices, to represent an object region then run our on-line RF learner to select object descriptors and to learn an object classifier. Experiments of the object recognition are provided to verify the effectiveness of the proposed approach. Results demonstrate that the propose model yields in object recognition performance comparable to the benchmark standard RF, AdaBoost, and SVM classifiers.

  • PDF