References
- Abel, T. and Lattal, K. M. (2001). Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr. Opin. Neurobiol. 11, 180-187 https://doi.org/10.1016/S0959-4388(00)00194-X
- Bertaina-Anglade, V., Enjuanes, E., Morillon, D. and Drieu la Rochelle, C. (2006). The object recognition task in rats and mice: a simple and rapid model in safety pharmacology to detect amnesic properties of a new chemical entity. J. Pharmacol. Toxicol. Methods. 54, 99-105 https://doi.org/10.1016/j.vascn.2006.04.001
- Bliss, T. V. and Gardner-Medwin, A. R. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J. Physiol. 232, 357-374 https://doi.org/10.1113/jphysiol.1973.sp010274
- Bussey, T. J., Muir, J. L. and Aggleton, J. P. (1999). Functionally dissociating aspects of event memory: the effects of combined perirhinal and postrhinal cortex lesions on object and place memory in the rat. J. Neurosci. 19, 495-502 https://doi.org/10.1523/JNEUROSCI.19-01-00495.1999
-
Collinson, N., Atack, J. R., Laughton, P., Dawson, G. R. and Stephens, D. N. (2006). An inverse agonist selective for a5 subunit-containing
$GABA_A$ receptors improves encoding and recall but not consolidation in the Morris water maze. Psychopharmacology (Berl). 188, 619-628 https://doi.org/10.1007/s00213-006-0361-z - Ennaceur, A. and Delacour, J. (1988). A new one-trial test for neurobiological studies of memory in rats: I. Behavioral data. Behav. Brain. Res. 31, 47-59 https://doi.org/10.1016/0166-4328(88)90157-X
- Ennaceur, A., Neave, N. and Aggleton, J. P. (1996). Spontaneous object recognition and object location memory in rats: the effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Exp. Brain. Res. 113, 509-519 https://doi.org/10.1007/PL00005603
- Everitt, B. J. and Robbins, T. W. (1997). Central cholinergic systems and cognition. Annu. Rev. Psychol. 48, 649-684 https://doi.org/10.1146/annurev.psych.48.1.649
- Hammond, R. S., Tull, L. E. and Stackman, R. W. (2004). On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol. Learn. Mem. 82, 26-34 https://doi.org/10.1016/j.nlm.2004.03.005
- Jouvenceau, A., Billard, J. M., Lamour, Y. and Dutar, P. (1996). Persistence of CA1 hippocampal LTP after selective cholinergic denervation. Neuroreport 7, 948-52 https://doi.org/10.1097/00001756-199603220-00024
- Kim, D. H., Yoon, B. H., Kim, Y. W., Lee, S., Shin, B. Y., Jung, J. W., Kim, H. J., Lee, Y. S., Choi, J. S., Kim, S. Y., Lee, K. T., Ryu, J. H. (2007). The seed extract of Cassia obtusifolia ameliorates learning and memory impairments induced by scopolamine or transient cerebral hypoperfusion in mice. J. Pharmacol. Sci. 105, 82-93 https://doi.org/10.1254/jphs.FP0061565
- Malenka, R. C. (2003). The long-term potential of LTP. Nat. Rev. Neurosci. 4, 923-926 https://doi.org/10.1038/nrn1258
- Massey, P. V., Warburton, E. C., Wynick, D., Brown, M. W. and Bashir, Z. I. (2003). Galanin regulates spatial memory but not visual recognition memory or synaptic plasticity in perirhinal cortex. Neuropharmacology 44, 40-48 https://doi.org/10.1016/S0028-3908(02)00297-6
- Molchan, S. E., Martinez, R. A., Hill, J. L., Weingartner, H. J., Thompson, K., Vitiello, B. and Sunderland, T. (1992). Increased cognitive sensitivity to scopolamine with age and a perspective on the scopolamine model. Brain Res. Rev. 17, 215-226 https://doi.org/10.1016/0165-0173(92)90017-G
- Mumby, D. G. and Pinel, J. P. (1994). Rhinal cortex lesions and object recognition in rats. Behav. Neurosci. 108, 11-8 https://doi.org/10.1037/0735-7044.108.1.11
- Norman, G., Brooks, S. P., Hennebry, G. M., Eacott, M. J. and Little, H. J. (2002). Nimodipine prevents scopolamine-induced impairments in object recognition. J. Psychopharmacol. 16, 153-161 https://doi.org/10.1177/026988110201600206
- Norman, G. and Eacott, M. J. (2004). Impaired object recognition with increasing levels of feature ambiguity in rats with perirhinal cortex lesions. Behav. Brain. Res. 148, 79-91 https://doi.org/10.1016/S0166-4328(03)00176-1
- Prickaerts, J., Sik, A., van der Staay, F. J., de Vente, J. and Blokland, A. (2005). Dissociable effects of acetylcholinesterase inhibitors and phosphodiesterase type 5 inhibitors on object recognition memory: acquisition versus consolidation. Psychopharmacology (Berl) 177, 381-390 https://doi.org/10.1007/s00213-004-1967-7
- Riekkinen, M. and Riekkinen, P. Jr. (1997). Dorsal hippocampal muscarinic acetylcholine and NMDA receptors disrupt water maze navigation. Neuroreport 8, 645-648 https://doi.org/10.1097/00001756-199702100-00013
- Riekkinen, P. Jr., Sirvio, J., Aaltonen, M. and Riekkinen, P. Effects of concurrent manipulations of nicotinic and muscarinic receptors on spatial and passive avoidance learning. Pharmacol. Biochem. Behav. 37, 405-410
- Vannucchi, M. G., Scali, C., Kopf, S. R., Pepeu, G. and Casamenti, F. (1997). Selective muscarinic antagonists differentially affect in vivo acetylcholine release and memory performances of young and aged rats. Neuroscience 79, 837-846 https://doi.org/10.1016/S0306-4522(97)00091-2
- Wan, H., Aggleton, J. P. and Brown, M. W. (1999). Different contributions of the hippocampus and perirhinal cortex to recognition memory. J. Neurosci. 19, 1142-1148 https://doi.org/10.1523/JNEUROSCI.19-03-01142.1999
- Warburton, E. C., Koder, T., Cho, K., Massey, P. V., Duguid, G., Barker, G. R. Aggleton, J. P., Bashir, Z. I. and Brown, M. W. (2003). Cholinergic neurotransmission is essential for perirhinal cortical plasticity and recognition memory. Neuron 38, 987-996 https://doi.org/10.1016/S0896-6273(03)00358-1
- Whishaw, I. Q. (1985). Formation of a place learning-set by the rat: a new paradigm for neurobehavioral studies. Physiol. Behav. 35, 139-143 https://doi.org/10.1016/0031-9384(85)90186-6
Cited by
- Distinct roles of the hippocampus and perirhinal cortex in GABAA receptor blockade-induced enhancement of object recognition memory vol.1552, 2014, https://doi.org/10.1016/j.brainres.2014.01.024
- cAMP/PKA signaling pathway contributes to neuronal apoptosis via regulating IDE expression in a mixed model of type 2 diabetes and Alzheimer's disease 2017, https://doi.org/10.1002/jcb.26321
- Lactucopicrin ameliorates oxidative stress mediated by scopolamine-induced neurotoxicity through activation of the NRF2 pathway vol.99, 2016, https://doi.org/10.1016/j.neuint.2016.06.010
- GABAA Receptor Blockade Enhances Memory Consolidation by Increasing Hippocampal BDNF Levels vol.37, pp.2, 2012, https://doi.org/10.1038/npp.2011.189
- Evidences of the role of the rodent hippocampus in the non-spatial recognition memory vol.297, 2016, https://doi.org/10.1016/j.bbr.2015.10.018
- Insulin degrading enzyme contributes to the pathology in a mixed model of Type 2 diabetes and Alzheimer’s disease: possible mechanisms of IDE in T2D and AD vol.38, pp.1, 2018, https://doi.org/10.1042/BSR20170862
- Curcumin Exerts Effects on the Pathophysiology of Alzheimer’s Disease by Regulating PI(3,5)P2 and Transient Receptor Potential Mucolipin-1 Expression vol.8, pp.1664-2295, 2017, https://doi.org/10.3389/fneur.2017.00531
- Comparison of scopolamine-induced cognitive impairment responses in three different ICR stocks vol.34, pp.4, 2018, https://doi.org/10.5625/lar.2018.34.4.317
- Scopolamine-induced passive avoidance memory retrieval deficit is accompanied with hippocampal MMP2, MMP-9 and MAPKs alteration vol.819, pp.None, 2008, https://doi.org/10.1016/j.ejphar.2017.12.007
- JM-20 protects memory acquisition and consolidation on scopolamine model of cognitive impairment vol.41, pp.5, 2008, https://doi.org/10.1080/01616412.2019.1573285
- Scopolamine Impairs Spatial Information Recorded With “Miniscope” Calcium Imaging in Hippocampal Place Cells vol.15, pp.None, 2008, https://doi.org/10.3389/fnins.2021.640350