• Title/Summary/Keyword: 이상행동

Search Result 1,805, Processing Time 0.04 seconds

Abnormal behavior prediction system based on companion animal behavior analysis (반려동물 행동 분석 기반 이상행동 예측 시스템)

  • Shin, Minchan;Moon, Nammee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.487-490
    • /
    • 2021
  • 최근 반려동물 관련 산업이 증가함에 따라 반려동물의 행동을 분석하는 연구가 진행되고 있다. 이를 바탕으로 본 논문에서는 반려동물 행동 분석을 통한 이상행동 예측 시스템을 제안한다. 이 시스템은 CCTV로부터 반려동물의 영상 데이터를 수집하고, YOLOv4(You Only Look Once version 4)를 통해 반려동물의 객체를 탐지한다. 행동을 분석하기 위해 탐지된 반려동물 객체를 DeepLabCut 딥러닝 알고리즘을 사용하여 관절 좌표 정보를 추출한다. 추출된 관절 좌표와 반려동물의 일반적인 행동을 매칭하여 이상행동을 예측하기 위한 DNN(Deep Neural Networks)의 입력 데이터로써 사용된다. 위 과정을 통해 반려동물의 전체적인 행동을 분석하여 이상행동을 예측한다. 이 시스템을 통해 반려동물의 행동을 분석하고 이상행동을 예측함으로써 반려동물 의료 관련 사업에도 적용될 수 있을 것이다.

Abnormal Behavior Detection and Localization Using Aspect Ratio Based on Mask R-CNN (Mask R-CNN 기반 Aspect Ratio를 활용한 이상행동 검출 및 영역화 방법)

  • Lim, Hyunseok;Hu, Xufeng;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.99-101
    • /
    • 2022
  • 이상 행동을 탐지하는 딥러닝 기반 검지 시스템은 동영상 기반 데이터로부터 움직임을 보이는 객체를 추적하고 그 객체의 행동을 분석하여 정상적인 행동 범위를 벗어나는 패턴을 보이는 영역을 이상으로 탐지한다. 특히 생성적 적대 신경망(GAN)과 광학 흐름 추정(Optical flow estimation) 기법을 활용하여 움직임에 대한 특징 정보를 추출하고 이를 학습하여 행동 패턴에 대한 모델링을 수행한다. 모델 학습 및 테스트에 활용되는 데이터셋의 해상도가 낮거나 이상 행동을 표현하는 특징 정보가 부족할 경우 최종 모델 성능에 부정적 영향을 미치게 되며, 특히 광학 흐름이 표현하는 이동량 측면에서 차이가 크게 나지 않는 이상 객체의 경우 탐지가 정확하게 이뤄지지 않는다. 본 연구에서는 동영상 프레임에서 나타나는 객체의 평균 종횡비를 구하고 정상적인 비율을 벗어나는 객체에 대해서 이상 행동을 취하는 샘플로 처리하는 후처리단 모듈을 제안하여 최종적인 모델 성능을 향상시키는 방법을 고안한다.

  • PDF

Analyzing the Importance of Balanced Action Classes in Weakly Supervised Video Anomaly Detection (준지도학습의 이상행동감지에서의 이상행동종류별 균형의 중요성 분석)

  • Tae Kyeong Park;Hyeon Jeong Park;Je Hyeong Hong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.145-148
    • /
    • 2022
  • 준지도학습 기반의 동영상 이상행동감지는 구하기 어려운 프레임 단위 레이블이 필요하지 않아 더 많은 동영상을 학습에 활용 가능한 장점이 있어 관련 연구가 활발히 진행되고 있다. 최근 제안된 기법들은 주로 UCF-Crime 이라는 실제 CCTV 동영상 데이터셋을 활용하고 있는데, 본 데이터셋은 학습 영상과 테스트 영상에서 이상행동 클래스 별 분포도가 균등하지 않다. 본 연구에서는 해당 불균형으로 인해 학습 모델이 특정 행동 클래스에 과적합될 수 있음을 보이며, 이러한 불균형을 해결하기 위해 Class-Balanced Multiple Instance Learning Loss 를 제안한다. 이를 통해 기존에 특정 클래스에 편중되었던 모델이 이상행동 종류에 좀 더 균등한 성능을 낼 수 있음을 보여준다. 특히 단순히 클래스별 정확도가 제로섬(zero sum)으로 증감하는 것이 아니라 전체적인 이상행동 판별 정확도 또한 향상됨을 실험 결과를 통해 확인할 수 있다.

  • PDF

Brief Overview of Deep Learning based Anomaly Detection for Smart Surveillance System (스마트 관제를 위한 딥러닝 기반 이상행동 기술 동향 분석)

  • Lee, Jiae;Mun, Sungchul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.14-16
    • /
    • 2019
  • 스마트관제 시스템은 딥러닝 서버내 학습된 백본 네트워크 모델이 실시간으로 스트리밍 되는 CCTV 영상으로부터 이상행동 패턴을 선별적으로 탐지하고 관제요원에게 전달하여, 사전에 사건사고를 예방하거나 즉시 대응 체계의 유연한 운영을 가능케하는 시스템이다. 최근 지능형 CCTV(Closed Circuit Television) 서비스가 일부 지역에 선별 관제의 형태로 시범적으로 운영되고 있는 상황이다. 지능형 시범서비스는 공공 영역에서 선별 CCTV 관제의 형태로 이상행동 상황을 즉각 인지하여 사건사고를 예방하거나 피해를 최소화하고자 하는 목적으로 주로 사용되고 있다. 그러나, 범죄 등의 특정 시나리오에만 한정해서도 이상 행동 유형이 너무나 다양하기 때문에 이상행동 영상의 사전분류(Annotation)를 통해 딥러닝 모델을 학습시키는 것이 현실적으로 어려운 상황이다. 따라서 본고에서는 최신 이상 행동 탐지(Anomaly detection) 알고리즘과 응용사례를 분석하여 실제 현장에 적용할 수 있는 현장 중심의 기법을 제안하고자 한다.

  • PDF

Design of pet abnormal behavior detection through sensor data augmentation based on GAN (GAN 기반 센서 데이터 증강을 통한 반려동물 이상행동 탐지 설계)

  • Kim, Hyungju;Moon, Nammee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.665-666
    • /
    • 2022
  • 반려동물의 이상행동 탐지를 위한 센서 데이터를 수집하는 과정에서 발생하는 시간과 비용의 문제로 인해 데이터 증강이 요구되고 있다. 본 논문에서는 통계적 변형과 GAN 기반의 데이터 증강을 통해 반려동물의 정상행동과 이상행동으로 분류하는 방법을 제안한다. 통계적 변형은 회전, 순열, 조합 등을 이용하며, GAN을 통해 원본 데이터에 노이즈가 포함된 유사한 데이터를 생성한다. 증강된 모든 데이터는 원본 데이터와 함께 학습 데이터로 사용한다. 최종적으로, LSTM의 단점을 보완한 Convolutional LSTM 모델을 통해 반려동물의 정상행동 인식의 범주를 넓혀 보다 정확한 이상행동을 인식하고자 한다.

Abnormal Behavior Monitoring System with YOLO AI Platform (YOLO 인공지능 플랫폼을 이용한 이상행동 감시 시스템)

  • Lee, Sang-Rak;Son, Byeong-Su;Park, Jun-Ho;Choi, Byeong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.431-433
    • /
    • 2021
  • In this paper, abnormal behavior monitoring system using YOLO AI platform was implemented and had superior response characteristics compared to the conventional monitoring system using two-shot detection by using one-shot detection of YOLO system. The YOLO platform was trained using image dataset composed of abnormal behaviors such as assault, theft, and arson. The abnormal behavior monitoring system consists of client and server and can be applicable to smart cities to solve various crime problems if it is commercialized.

  • PDF

A Study on Monitoring System for an Abnormal Behaviors by Object's Tracking (객체 추적을 통한 이상 행동 감시 시스템 연구)

  • Park, Hwa-Jin
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.589-596
    • /
    • 2013
  • With the increase of social crime rate, the interest on the intelligent security system is also growing. This paper proposes a detection system of monitoring whether abnormal behavior is being carried in the images captured using CCTV. After detection of an object via subtraction from background image and morpholgy, this system extracts an abnormal behavior by each object's feature information and its trajectory. When an object is loitering for a while in CCTV images, this system considers the loitering as an abnormal behavior and sends the alarm signal to the control center to facilitate prevention in advance. Especially, this research aims at detecting a loitoring act among various abnormal behaviors and also extends to the detection whether an incoming object is identical to one of inactive objects out of image.

Literature Review on the relation between Animals Unusual Behavior and Premonitory Symptoms of an Earthquake (동물 이상행동과 지진전조 가설검증 연구동향 및 한계점)

  • Lee, Sohee;Park, Youngjin
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.1
    • /
    • pp.89-95
    • /
    • 2017
  • The cases of animals unusual behavior have been reported occasionally before a major disaster occurs. Could animals unusual behavior associated with a major disaster occurrence, if so, could we foreknow a disaster occurrence? The purpose of study is to quest an answer through literature reviews on the relation between animals unusual behavior and premonitory symptoms of an earthquake. These empirical studies are classified three parts according as methodological framework; statistical analysis, experimental analysis, observation analysis. The results are simply divided as two, 'animals unusual behavior may be seen as a precursor of pre-disaster phenomena' and 'difficult to see.' A number of studies have been performed abroad, however there is no one in Korea. Most of the studies point out common limitations-difficult to verify the reliability of data, accidentally get and fewer samples of data, difficulty of ensuring appropriate data, etc. That is why more related research with animals unusual behavior and disaster occurrence is needed to validate cause-and-effect relation of animal unusual behavior and pre-disaster phenomena.

Crime prediction Model with Moving Behavior pattern (행동 패턴 기반 범죄 예측 모델 연구)

  • Choe, Jong-Won;Choi, Ji-Hyen;Yoon, Yong-Ik
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.1
    • /
    • pp.55-57
    • /
    • 2016
  • In this paper, we present an algorithm to determine the abnormal behavior through a CCTV-based behavioral recognition and a pattern of hand using ConvexHull. In the existing way that using CCTV for crime prevention, facial recognition is mainly used. Facial recognition is the way that compares the faces that are seen on the screen and faces of criminals for determining how dangerous targets are, however, this way is hard to predict future criminal behavior. Therefore, to predict more various situations, abnormal behaviours are determined with targets' incline of arms, legs and bodys and patterns of hand movements. it can forecast crimes when an acting has been getting within common normality out, comparing whose acting patterns with the crime patterns.

Relationship between Prescribed Perfectionism and Disordered Eating Behaviors :The Double Mediating Effects of Self-Compassion and Body Shame in Obesity Clinical Women (사회부과 완벽주의와 이상섭식행동 간의 관계에서 자기자비와 신체수치심의 매개효과: 비만클리닉을 내원하는 20~30대 여성을 대상으로)

  • Bang, Jung Won;Chung, Eun Jung
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.5
    • /
    • pp.588-601
    • /
    • 2019
  • The purpose of this study is to find the mediating effect of self-compassion and body shame between evaluative concerns prescribed perfectionism and disordered eating behaviors in obesity clinical women. For this purpose, 114 data samples were collected from the 20~39 ages currently enrolled in Seoul. The result of this study is the following. First, the prescribed perfectionism has a positive relation with body shame and disordered eating behaviors, however, it shows a negative relation with self-compassion. Also, there were negative relations between self-compassion and body shame, and self-compassion and disordered eating behaviors, in contrast to positive relations between body shame and disordered eating behaviors. Second, it was found that after investigating the mediation effect of self-compassion and body shame support in the influence between prescribed perfectionism and disordered eating behaviors, body shame turned out to have a significant mediation effect while self-compassion support did not. Third, self-compassion and body shame were identified as double mediation variables between the prescribed perfectionism and disordered eating behaviors. This result inspires the clinical women disordered eating behaviors and can be useful in obesity clinical women counseling settings. Meanings, limitations and suggest for future research were discussed.