• Title/Summary/Keyword: 이방성강도

Search Result 200, Processing Time 0.024 seconds

Tensile Behavior of Highly Ductile Cementitious Composites Using Normal Sand as Fine Aggregate (일반모래를 잔골재로 사용한 고연성 시멘트 복합체의 인장거동)

  • Lee, Bang Yeon;Kang, Su-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.178-184
    • /
    • 2017
  • This study was aimed to investigate the tensile behaviors of PE(Polyethylene) fiber-reinforced highly ductile cementitious composites with different combinations of micro silica sand and normal sand(river sand) with maximum particle size of 4.75 mm. Flow test result indicated the increase of flowability with higher replacement ratio of river sand. There was no noticeable difference in the mean compressive strength with different replacement ratio of river sand, but the variation in the compressive strength increased as higher amount of river sand was adopted for the replacement. The difference in the uniaxial tensile strength was negligible, but the tensile strain capacity was significantly influenced by the replacement ratio of river sand. It is thought that increased density of multiple cracks induced improved tensile strain capacity when higher percentage of river sand was adopted for fine aggregate. The deviation in the strain capacity increased as the replacement ratio of river sand was higher, as in the compressive strength. This study presented the feasibility of using normal sand instead of micro silica sand for highly ductile cementitious composites with equivalent or better uniaxial tensile performance, even though it might increase the deviation in the performance.

Characteristics of the Rock Cleavage in Jurassic Granite, Geochang (거창지역의 쥬라기 화강암에 발달된 결의 특성)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.153-164
    • /
    • 2015
  • Jurassic granite from Geochang was analysed with respect to the characteristics of the rock cleavage. we have mainly discussed the structual anisotropy formed by microcracks. The phases of distribution of microcracks were well evidenced from the enlarged photomicrographs(${\times}6.7$) of the thin section. The planes of principal set of microcracks are parallel to the rift plane and those of secondary set are parallel to the grain plane. These rift and grain microcracks are mutually near-perpendicular on the hardway planes. From the directional angle(${\theta}$) - total length($L_t$), number(N) and density(${\rho}$) chart, the curve patterns of the above microcrack parameters reflect the phases of distribution of microcracks. Microcrack parameters such as number, length and density show an order of rift > grain > hardway. These results indicate a relative magnitude of the rock cleavage. Meanwhile, brazilian tensile strengths were measured with respect to the six directions. The results revealed a strong correlation between mechanical property with the above microcrack parameters. These general results correspond to those of the previous study for Jurassic granites from Pocheon and Hapcheon. Image processing technique for the enlarged photomicrograph of the thin section was carried out. The grain 1(G1) microcrack arrays developed in quartz and feldspar grains show excellent distribution on the photomicrograph. In particular, the directional angle of each microcrack set can be ascertained easily by brief image processing for the above photomicrograph.

Concrete Optimum Mixture Proportioning Based on a Database Using Convex Hulls (최소 볼록 집합을 이용한 데이터베이스 기반 콘크리트 최적 배합)

  • Lee, Bang-Yeon;Kim, Jae-Hong;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.627-634
    • /
    • 2008
  • This paper presents an optimum mixture design method for proportioning a concrete. In the proposed method, the search space is constrained as the domain defined by the minimal convex region of a database, instead of the available range of each component and the ratio composed of several components. The model for defining the search space which is expressed by the effective region is proposed. The effective region model evaluates whether a mix-proportion is effective on processing for optimization, yielding highly reliable results. Three concepts are adopted to realize the proposed methodology: A genetic algorithm for the optimization; an artificial neural network for predicting material properties; and a convex hull for evaluating the effective region. And then, it was applied to an optimization problem wherein the minimum cost should be obtained under a given strength requirement. Experimental test results show that the mix-proportion obtained from the proposed methodology using convex hulls is found to be more accurate and feasible than that obtained from a general optimum technique that does not consider this aspect.

A Study on Characteristic of Superconductivity and Microstructure of $Y_1Ba_2Cu_3O_{7-y}$-Ag ($Y_1Ba_2Cu_3O_{7-y}$-Ag의 초전도성과 미세구조의 특성 연구)

  • Kim, Chae-Ok;Park, Jeong-Su;Yu, Deok-Su
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.786-793
    • /
    • 1995
  • Ag-doped $Y_1$Ba$_2$Cu$_3$O$_{7-y}$ samples have been prepared by solid state reaction. High-Tc super conductivity, microstructure and mechanical property of the Ag-doped $Y_1$Ba$_2$Cu$_3$O$_{7-y}$ samples have been studied. As the Ag content increased, the grain size of $Y_1$Ba$_2$Cu$_3$O$_{7-y}$, increased and connectivity between the grains was improved, and the sample becomed denser and harder than the undoped. From the result, it is concluded that Ag addition reduced weak link and weak coupling between grains and led to the strong coupling. Furthermore, the anisotropy of crytstal structure was decreased and thermal stability, mechanical property of $Y_1$Ba$_2$Cu$_3$O$_{7-y}$-Ag were improved.mproved.

  • PDF

A Study on the Wire Drawing of Stainless Steel (스테인리스 와이어의 인발에 관한 연구)

  • Park, Kang-Geun;Choi, Won-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.1 s.23
    • /
    • pp.71-78
    • /
    • 2007
  • Stainless steel is very famous for using of industrials structure and joint elements. Stainless steel wire drawing is one of the most ancient crafts. But there's not any standard size of tapered die during tile drawing. This paper was studied die angle and dimension of whole die by using AFDEX drawing simulator. Stress, metal flow and strain rate was analyzed by AFDEX tools during the wire drawing. So optimum data of during dies was taken from them. Simulation data was correspond with experimental data. The results of the optimum dies are shown that (1) Reduction angle is $13.8^{\circ}$ (2) Bark relief angle is $20^{\circ}$ (3) Bearing length is 0.7975mm (4) Bearing dia is 0.2393mm The research of the optimum result when the make dies is connected an enterprise. After researching, I hope that indirection effect creation make development situation of the manufactural technical, practical application of the other die size by the detail data, utility factor and economical efficiency.

  • PDF

Strain-Hardening Cementitious Composites with Low Viscosity Suitable for Grouting Application (그라우팅에 적합한 점성을 갖는 변형률 경화 시멘트 복합재료)

  • Lee, Bang Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.55-63
    • /
    • 2012
  • This paper presents materials and processing technique to manufacture low viscous strain-hardening cementitious composite which is suitable for structures requiring low viscosity of materials. The micromechanics and fracture mechanics tools coupled with processing techniques were adopted to achieve low viscosity of composites as well as high tensile strain capacity. Optimal volume and length of fibers and interfacial properties between fibers and matrix for composites with tensile strength of 2~3MPa were determined on the basis of the micromechanical analysis and the steady-state cracking theory. Then six mixtures were determined and the experiment was carried out to evaluate the viscosity and uniaxial tensile performance of those. From the test results, it is verified that the strain-hardening cementitious composite with low viscosity suitable for grouting applications in fresh state as well as high ductility over 1.5% in hardened state can be feasible.

Evaluation of Characteristics of Re-liquefaction Resistance in Saturated Sand Deposits Using 1-g Shaking Table Test (1-g 진동대시험을 이용한 포화된 모래지반의 재액상화 강도 특성 평가)

  • Ha Ik-Soo;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.65-70
    • /
    • 2005
  • Many case histories of re-liquefaction phenomena seem to support the idea that sand deposits, if they once have been liquefied, could be reliquefied again by a subsequent earthquake even though the earthquake is smaller than the previous one. The magnitude of the strains induced in the initial liquefaction has a significant influence on the resistance of the sample to re-liquefaction. The deposits undergoing liquefaction experience large shear strain during liquefaction. And this previous strain changes the microstructure into highly anisotropic structure such as columnlike structure and connected voids. This type of anisotropy is so unstable that it can reduce re-liquefaction resistance. It is blown that the extent of anisotropic structural change depends on the gradation characteristics of ground. The purpose of this study is to estimate the correlation between the gradation characteristics of the sand and the ratio of re-liquefaction resistance to liquefaction resistance. In this study, 1-g shaking table tests were carried out on five different kinds of sands. During the tests the values of excess pore pressure at various depths and surface settlements were measured. Re-liquefaction resistances were not affected by the initial void ratio and the effective confining pressures, and the deposits of all test sands which had once been liquefied were reliquefied in the cyclic loading number below 1 to 1.5. The ratio of re-liquefaction resistance to liquefaction resistance linearly decreased as $D_{10}/C_u$ increased, and was constant as about 0.2 above the value of $D_{10}/C_u$, 0.15 mm.

Carbonation Characteristics of Alkali Activated Blast-Furnace Slag Mortar (알칼리활성 고로슬래그 모르타르의 탄산화 특성)

  • Song, Keum-Il;Yang, Keun-Hyeok;Lee, Bang-Yeon;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.315-322
    • /
    • 2012
  • Alkali-activated slag (AAS) is the most obvious alternative materials that can replace OPC. But, AAS industrial usage as a structural material should be evaluated for its durability. Carbonation resistance is one of the most important factors in durability evaluation. Test results for 18 slag-based mortars activated by sodium silicate and 6 OPC mortars were obtained in this study to verify the carbonation property. Main variables considered in the study were flow, compressive strength before and after carbonation, and carbonation depth. Mineralogical and micro-structural analysis of OPC and AAS specimens prior to and after carbonation was conducted using XRD, TGA, FTIR FE-SEM. Test results showed that CHS was major hydration products of AAS and, unlike OPC, no other hydration products were found. After carbonation, CSH of hydration product in AAS turned into an amorphous silica gel, and alumina compounds was not detected. From the analysis of the results, it was estimated that the micro-structures of CSH in AAS easily collapsed during carbonation. Also, the results showed that this collapse of chemical chain of CSH lowered the compressive strength of concrete after carbonation. By increasing the dosage of activators, carbonation resistance and compressive strength were effectively improved.

Analysis of ground reinforcement effect using fracturing grouting (침투 및 할렬주입에 의한 지반보강 효과에 관한 연구)

  • Lee, J.S.;Lee, I.M.;Chung, H.S.;Lee, D.S.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.349-360
    • /
    • 2003
  • A practical modeling approach has been proposed in this study to better understand the behavior of penetration grouting which is normally applied to the jointed rock masses to increase the bearing capacity and to reduce the ground water flow into the tunnel. Based on Bingham model together with a steady-state flow of the grout, penetration model is simulated in the commercial package called UDEC and, injection pressure as well as joint thickness are found to be the main parameters to determine the range of grout spread. Another numerical model on fracturing grouting is also suggested and, in this case, the tensile strength as well as cohesion of the rock masses are proven to be the major factors to decide the fracturing mechanism of the rock masses. The reinforcement effect of the grout-reinforced rock masses is calculated from the suggested algorithm on orthotropic material model and it is found that the directional stiffness of reinforced rock masses is increased up to 3 to 4 times compared with original jointed rock masses. Future work will be concentrated on the water control around the tunnel by the grout injection and a model test will also be performed to verify the suggested methods developed in this study.

  • PDF

A review of the effects of rock properties on waterjet rock cutting performance (암석물성이 워터젯 암석절삭 성능에 미치는 영향고찰)

  • Oh, Tae-Min;Park, Eui-Seob;Cheon, Dae-Sung;Cho, Gye-Chun;Joo, Gun-Wook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.5
    • /
    • pp.533-551
    • /
    • 2015
  • The rock fracturing during waterjet cutting is very complicated because rock is inhomogeneous and anisotropic, compared with artificial materials (e.g., metal or glass). Thus, it is very important to verify the effects of rock properties on waterjet rock cutting performance. Properties affecting the rock cutting efficiency have been variously described in the literature, depending on the experimental conditions (e.g., water pressure, abrasive feed rate, or standoff distance) and rock-types studied. In this study, a rock-property-related literature review was performed to determine the key properties important for waterjet rock cutting. Porosity, uniaxial compressive strength, and hardness of the rock were determined to be the key properties affecting waterjet rock cutting. The results of this analysis can provide the basic knowledge to determine the cutting efficiency of waterjet rock cutting technology for rock excavation-related construction.