DOI QR코드

DOI QR Code

Characteristics of the Rock Cleavage in Jurassic Granite, Geochang

거창지역의 쥬라기 화강암에 발달된 결의 특성

  • Park, Deok-Won (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources)
  • 박덕원 (한국지질자원연구원 지구환경연구본부)
  • Received : 2014.04.21
  • Accepted : 2015.05.26
  • Published : 2015.09.30

Abstract

Jurassic granite from Geochang was analysed with respect to the characteristics of the rock cleavage. we have mainly discussed the structual anisotropy formed by microcracks. The phases of distribution of microcracks were well evidenced from the enlarged photomicrographs(${\times}6.7$) of the thin section. The planes of principal set of microcracks are parallel to the rift plane and those of secondary set are parallel to the grain plane. These rift and grain microcracks are mutually near-perpendicular on the hardway planes. From the directional angle(${\theta}$) - total length($L_t$), number(N) and density(${\rho}$) chart, the curve patterns of the above microcrack parameters reflect the phases of distribution of microcracks. Microcrack parameters such as number, length and density show an order of rift > grain > hardway. These results indicate a relative magnitude of the rock cleavage. Meanwhile, brazilian tensile strengths were measured with respect to the six directions. The results revealed a strong correlation between mechanical property with the above microcrack parameters. These general results correspond to those of the previous study for Jurassic granites from Pocheon and Hapcheon. Image processing technique for the enlarged photomicrograph of the thin section was carried out. The grain 1(G1) microcrack arrays developed in quartz and feldspar grains show excellent distribution on the photomicrograph. In particular, the directional angle of each microcrack set can be ascertained easily by brief image processing for the above photomicrograph.

거창지역의 쥬라기 화강암에 대하여 결의 특성에 대한 분석을 실시하였다. 미세균열에 의하여 형성된 구조적 이방성을 주로 논의하였다. 미세균열의 분포상은 박편의 확대사진(${\times}6.7$)에서 잘 확인되었다. 일차 우세 미세균열은 1번 면에 평행하고 이차 우세 미세균열은 2번 면에 평행하다. 이들 1번 결과 2번 결을 형성하는 미세균열은 3번 면상에서 상호 거의 수직을 이룬다. 방향각(${\theta}$)-총 길이($L_t$), 빈도수(N) 및 밀도(${\rho}$)의 도표에서 상기 미세균열의 모수의 곡선형태는 미세균열의 분포상을 반영한다. 빈도수, 길이 및 밀도와 같은 미세균열의 모수들은 1번 결 > 2번 결 > 3번 결의 순서로 나타난다. 이러한 결과는 결의 상대적인 강도를 지시한다. 한편 6개 방향에 따른 압열 인장강도가 측정되었다. 강도와 위의 미세균열의 모수들 사이에는 밀접한 상관성을 보이고 있다. 이러한 전반적인 결과는 포천 및 합천지역의 쥬라기 화강암류에 대한 기존의 연구결과와 부합한다. 박편의 확대사진에 대한 이미지 처리 기법을 수행하였다. 사진 상에서 석영 및 장석 내부에서 발달하는 그레인 1(G1) 미세균열의 배열이 탁월한 분포를 보여준다. 특히 위의 사진에 대한 간단한 이미지 처리를 통하여 각 미세균열 조의 방향각을 용이하게 확인할 수가 있다.

Keywords

References

  1. Akesson, U., Hanssen, J. and Stigh, J., 2003, Characterisation of microcracks in the Bohus granite, western Sweden, caused by uniaxial cyclic loading. Engineering Geology, 72, 131-141.
  2. Chae, B.G. and Seo, Y.S., 2011, Homogenization analysis for estimating the elastic modulus and representative elementary volume of Inada granite in Japan. Geosciences Journal, 15, 387-394. https://doi.org/10.1007/s12303-011-0035-7
  3. Douglass, P.M. and Voight, B., 1969, Anisotropy of granites: A reflection of microscopic fabric. Geotechnique, 19, 376-398. https://doi.org/10.1680/geot.1969.19.3.376
  4. Hadley, K., 1976, Comparison of calculated and observed crack densities and seismic velocities of Westerly granite. Journal of Geophysical Research, 81, 3484-3494. https://doi.org/10.1029/JB081i020p03484
  5. Jang, B.A., Kim, Y.H., Kim, J.D. and RHee, C.G., 1998, Microcrack development in the Pocheon Granite due to cyclic loading. The Journal of Engineering Geology, 8, 275-284.
  6. Jang, B.A. and Oh, S.H., 2001, Mechanical anisotropy development on the rock fabric in the Pocheon granite and its relationship eith microcracks. The Journal of Engineering Geology, 11, 191-203.
  7. Kim, D.H., Hwang, J.H., Park, K.H. and Song, K.Y., 1998, Geological report of the Pusan sheet (1:250,000). Korea Institute of Geology, Mining and Materials (KIGAM), 62p.
  8. Kranz, R.L., 1979, Crack growth and development during creep of Barre granite. International Journal of Rock Mechanics and Mining, 16, 23-35.
  9. Kranz, R.L., 1980, The effet of confining pressure and stress difference on static fatigue of granite. Journal of Geophysical Research, 85, 1854-1866. https://doi.org/10.1029/JB085iB04p01854
  10. Kranz, R.L., 1983, Microcrack in rocks:a review. Tectonophysics, 100, 449-480. https://doi.org/10.1016/0040-1951(83)90198-1
  11. Kang, T.H., Kim, K.Y., Park, D.W., and Shin, H.S., 2014, Influence of anisotropy of microcrack distribution in Pocheon granite rock on elastic resonance characteristics. The Journal of Engineering Geology, 24, 363-372. https://doi.org/10.9720/kseg.2014.3.363
  12. Lee, B.D., Jang, B.A., Yun, H.S., Lee, H.Y. and Jin, M.S., 1999, Characteristics of microcrack development in granite of the Mungyeong area in Korea. The Journal of the Petrological Society of Korea, 8, 24-33.
  13. Nishiyama, T., Chen, Y., Kusuda, Ito, T., Kaneko, K., Kita, H. and Sato, T., 2002, The examination of fracturing process subjected to triaxial compression test in Inada granite. Engineering Geology, 66, 257-269. https://doi.org/10.1016/S0013-7952(02)00046-7
  14. Park, D.W., 2007, Orientations of vertical rift and grain planes in Mesozoic granites, Korea. The Journal of the Petrological Society of Korea, 16, 12-26.
  15. Park, D.W., 2009, Microcrack orientations in Tertiary crystalline tuff from Northeastern Gyeongsang Basin. The Journal of the Petrological Society of Korea, 18, 115-135.
  16. Park, D.W., 2011, Characteristics of the rock cleavage in Jurassic granite, Hapcheon. The Journal of the Petrological Society of Korea, 20, 219-230. https://doi.org/10.7854/JPSK.2011.20.4.219
  17. Park, D.W., Kim, H.C., Lee, C.B., Hong, S.S., Chang, S.W. and Lee, C.W., 2004, Characteristics of the rock cleavage in Jurassic granite, Pocheon. The Journal of the Petrological Society of Korea, 13, 133-141.
  18. Peng, S.S and Johnson, A.M., 1972, Crack growth and faulting in cylindrical specimens of Chelmsford granite. International Journal of Rock Mechanics and Mining, 9, 37-86. https://doi.org/10.1016/0148-9062(72)90050-2
  19. Plumb, R., Engelder, T. and Yale, D., 1984, Near-surface insitu stress, 3. Correlation with microcrack fabric within the New Hampshire Granites. Journal of Geophysical Research, 89, 9350-9364. https://doi.org/10.1029/JB089iB11p09350
  20. Segall, P., 1984, Formation and growth of extensional fracture sets. Geological Society of America Bulletin, 95, 454-462. https://doi.org/10.1130/0016-7606(1984)95<454:FAGOEF>2.0.CO;2
  21. Seo Y.S., 2000, Stress relaxation test of granite under watersaturated triaxial condition. The Journal of Engineering Geology, 10, 217-223.
  22. Seo, Y.S., Jeong, G.C., Kim, J.S. and Ichikawa, Y., 2002, Microscopic observation and contact stress analysis of granite under compression. Engineering Geology, 63, 259-275. https://doi.org/10.1016/S0013-7952(01)00086-2
  23. Seo Y.S. and Jeong, G.C., 1999, Micro-damage process in granite under the state of water-saturated triaxial compression. The Journal of Engineering Geology, 9, 243-251.
  24. Simmon, G., Todd, T., and Baldridge, W.S., 1975, Toward a quantitative relationship between elastic properties and cracks in low porosity rocks. American Journal of Science, 275, 318-345. https://doi.org/10.2475/ajs.275.3.318
  25. Streckeisen, A.L., 1976, To each plutonic rocks and its proper name. Earth-science reviews, 12, 1-33. https://doi.org/10.1016/0012-8252(76)90052-0
  26. Takemura, T., Golshani, A., Oda, M., and Suzuki, K., 2003, Preferred orientation of microcracks in granite and their relation with anisotropic elasticity. International Journal of Rock Mechanics and Mining Sciences, 40, 443-454. https://doi.org/10.1016/S1365-1609(03)00014-5
  27. Takemura, T. and Oda, M., 2004, Stereology-based fabric analysis of microcracks in damaged granite. Tectonophysics, 387, 131-150. https://doi.org/10.1016/j.tecto.2004.06.004
  28. Tapponier, P. and Brace, W.F., 1976, Development of stressinduced microcracks in Westerly granite. International Journal of Rock Mechanics and Mining Sciences, 13, 103-112. https://doi.org/10.1016/0148-9062(76)91937-9
  29. Thill, T.E., Bur, T.R., and Steckley, R.C., 1973, Velocity anisotropy in dry and saturated rock spheres and its relation to rock fabric. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 10, 535-557. https://doi.org/10.1016/0148-9062(73)90004-1
  30. Thill, R.E., Williard, R.J., and Bur, T.R., 1969, Correlation of longitudinal velocity variation with rock fabric. Journal of Geophysical Research, 74, 4898-4909.
  31. Vollbrecht, A., Rust, S. and Weber, K., 1991, Development of microcracks in granites during cooling and uplift: examples from the Variscan basement in NE Bavaria, Germany. Journal of Structural Geology, 13, 787-799. https://doi.org/10.1016/0191-8141(91)90004-3
  32. Wawersik, W.R. and Brace, W.F., 1971, Post-failure behaviour of a granite and diabase. Rock Mechanics, 3, 61-85.
  33. Wong, T.-F., 1982, Micromechanics of faulting in Westerly granite. International Journal of Rock Mechanics and Mining, 19, 49-64.
  34. Yun, H.S., Hong, S.S., Park, D.W., and Lee, J.Y., 2012, Applied petrologic study of the Daebo biotite granites in the mid Gyeonggi Massif. The Journal of the Petrological Society of Korea, 21, 263-275. https://doi.org/10.7854/JPSK.2012.21.2.263

Cited by

  1. Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (I) vol.25, pp.1, 2016, https://doi.org/10.7854/JPSK.2016.25.1.13
  2. Editorial : 2015, Applied petrology: Dimension stone, Aggregate, Stone cultural heritage vol.24, pp.3, 2015, https://doi.org/10.7854/JPSK.2015.24.3.149
  3. Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (II) vol.25, pp.2, 2016, https://doi.org/10.7854/JPSK.2016.25.2.151
  4. Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (III) vol.25, pp.4, 2016, https://doi.org/10.7854/JPSK.2016.25.4.311