• Title/Summary/Keyword: 이미지 기반 이미지 생성

Search Result 745, Processing Time 0.032 seconds

Image Generation from Korean Dialogue Text via Prompt-based Few-shot Learning (프롬프트 기반 퓨샷 러닝을 통한 한국어 대화형 텍스트 기반 이미지 생성)

  • Eunchan Lee;Sangtae Ahn
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.447-451
    • /
    • 2022
  • 본 논문에서는 사용자가 대화 텍스트 방식의 입력을 주었을 때 이를 키워드 중심으로 변환하여 이미지를 생성해내는 방식을 제안한다. 대화 텍스트란 채팅 등에서 주로 사용하는 형식의 구어체를 말하며 이러한 텍스트 형식은 텍스트 기반 이미지 생성 모델이 적절한 아웃풋 이미지를 생성하기 어렵게 만든다. 이를 해결하기 위해 대화 텍스트를 키워드 중심 텍스트로 바꾸어 텍스트 기반 이미지 생성 모델의 입력으로 변환하는 과정이 이미지 생성의 질을 높이는 좋은 방안이 될 수 있는데 이러한 태스크에 적합한 학습 데이터는 충분하지 않다. 본 논문에서는 이러한 문제를 다루기 위한 하나의 방안으로 사전학습된 초대형 언어모델인 KoGPT 모델을 활용하며, 퓨샷 러닝을 통해 적은 양의 직접 제작한 데이터만을 학습시켜 대화 텍스트 기반의 이미지 생성을 구현하는 방법을 제안한다.

  • PDF

Creating Sky Images according to Weather Conditions Using GAN (GAN을 활용한 기상조건에 따른 하늘 이미지 생성)

  • Cho Kyu Cheol;Jo Kang Hyeon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.293-296
    • /
    • 2024
  • 현재 생성형 AI가 활발히 연구되고 있는 가운데, 대부분의 이미지 생성 AI는 프롬프트를 기반으로 한 Text-To-Image 방식을 주로 사용하고 있다. 하지만, 프롬프트 기반의 생성 AI는 실제 서비스에 도입하기 어려운 점이 많다. 여러 이미지 중, 하늘 이미지는 메타버스 등 가상 공간에서 매우 자주 사용되는 이미지 중 하나이면서 여러 입력값에 의해 이미지가 달라진다. 이 논문에서는 GAN을 활용해 기상 조건에 적합한 하늘 이미지를 생성하는 프로그램을 설계 및 구현한다.

  • PDF

Agricultural Applicability of AI based Image Generation (AI 기반 이미지 생성 기술의 농업 적용 가능성)

  • Seungri Yoon;Yeyeong Lee;Eunkyu Jung;Tae In Ahn
    • Journal of Bio-Environment Control
    • /
    • v.33 no.2
    • /
    • pp.120-128
    • /
    • 2024
  • Since ChatGPT was released in 2022, the generative artificial intelligence (AI) industry has seen massive growth and is expected to bring significant innovations to cognitive tasks. AI-based image generation, in particular, is leading major changes in the digital world. This study investigates the technical foundations of Midjourney, Stable Diffusion, and Firefly-three notable AI image generation tools-and compares their effectiveness by examining the images they produce. The results show that these AI tools can generate realistic images of tomatoes, strawberries, paprikas, and cucumbers, typical crops grown in greenhouse. Especially, Firefly stood out for its ability to produce very realistic images of greenhouse-grown crops. However, all tools struggled to fully capture the environmental context of greenhouses where these crops grow. The process of refining prompts and using reference images has proven effective in accurately generating images of strawberry fruits and their cultivation systems. In the case of generating cucumber images, the AI tools produced images very close to real ones, with no significant differences found in their evaluation scores. This study demonstrates how AI-based image generation technology can be applied in agriculture, suggesting a bright future for its use in this field.

Design and Implementation of Deep-Learning-Based Image Tag for Semantic Image Annotation in Mobile Environment (모바일 환경에서 딥러닝을 활용한 의미기반 이미지 어노테이션을 위한 이미지 태그 설계 및 구현)

  • Shin, YoonMi;Ahn, Jinhyun;Im, Dong-Hyuk
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.895-897
    • /
    • 2019
  • 모바일의 기술 발전과 소셜미디어 사용의 증가로 수없이 많은 멀티미디어 콘텐츠들이 생성되고 있다. 이러한 많은 양의 콘텐츠 중에서 사용자가 원하는 이미지를 효율적으로 찾기 위해 의미 기반 이미지 검색을 이용한다. 이 검색 기법은 이미지에 의미 있는 정보들을 이용하여 사용자가 찾고 자하는 이미지를 정확하게 찾을 수 있다. 본 연구에서는 모바일 환경에서 이미지가 가질 수 있는 의미적 정보를 어노테이션 하고 이와 더불어 모바일에 있는 이미지에 풍성한 어노테이션을 위해 딥러닝 기술을 이용하여 다양한 태그들을 자동 생성하도록 구현하였다. 이렇게 생성된 어노테이션 정보들은 의미적 기반 태그를 통해 RDF 트리플로 확장된다. SPARQL 질의어를 이용하여 의미 기반 이미지 검색을 할 수 있다.

Generating Combined Query Plan for Content-Based Image Retrieval (내용 기반 이미지 검색을 위한 복합 질의문 계획 생성 기법)

  • Park, Mi-Hwa;Eom, Gi-Hyeon
    • Journal of KIISE:Databases
    • /
    • v.27 no.4
    • /
    • pp.562-571
    • /
    • 2000
  • 이미지 데이터는 텍스트 데이터와는 달리 다양한 색상과 모양, 질감과 같은 비정형적인 특징을 가진다. 따라서 이미지 데이터베이스는 텍스트 기반의 전통 데이터베이스와는 다른 모델링 방법과 질의, 검색 방법을 사용한. 특히, 내용 기반 이미지 검색에서의 검색 속도와 정확도를 향상시키기 위해서는 새로운 복합 질의문 계획 생성 기법이 필요하다. 본 논문에서는 이를 위해 먼저, 단일 조건을 갖는 시각 질의에 대한 처리 기법들을 토대로 여러 조건을 갖는 복합 질의를 처리하기 위한 복합 질의문 계획 생성기법인 SSCC(Similarity Search for Conjunction Combination Query) 알고리즘을 제안한다. SSCC는 이미지 데이터베이스 검색 시스템에서 복합 질의를 처리하기 위한 질의 최적화 과정에서 질의 수행 시간과 투플 I/O를 최소화하는 질의문 계획을 생성하기 위해 사용된다. SSCC 알고리즘은 복합질의를 단일 질의들로 준해하고 퍼지 집합 이론을 도입하여 단일 질의의 결과들을 통합한다. 논문에서 연구된 내용 기반 복합 질의문 계획 생성 기법은 특정 이미지 영역에 국한되지 않으며 다양한 종류의 시각 질의를 수행하기 위한 효율적인 질의문 계획 생성 기법으로 사용될 수 있다.

  • PDF

GAN-based Dance Performance Visual Background Generation Method using Emotion Analysis on Lyrics (가사의 감정 분석을 이용한 GAN 기반 댄스 공연 배경 생성 방법)

  • Yoon, Hyewon;Kwak, Jeonghoon;Sung, Yunsick
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.530-531
    • /
    • 2020
  • 최근 인공지능을 활용하여 예술 작품에 몰입할 수 있도록 무대 효과를 디자인하는 연구가 진행되고 있다. 무대 효과 중에서 무대 배경은 공연의 분위기를 형성한다. 춤의 장르별로 무대 배경에 사용되는 이미지를 생성하기 위해 소셜 미디어 기반 무대 배경 생성 시스템이 있다. 하지만 같은 장르 춤은 동일한 무대 배경 이미지가 제공되는 문제가 있다. 같은 장르의 춤이지만 노래의 분위기를 반영하여 차별된 무대 배경 이미지를 제공하는 것이 필요하다. 본 논문은 노래 가사의 감정을 활용하여 Generative Adversarial Network(GAN)을 통해 각 노래의 분위기를 고려한 무대 배경 이미지를 생성하는 방법을 제안한다. GAN은 노래에 포함된 단락별 감정 단어를 추출하여 스타일을 생성하도록 학습된다. 학습된 GAN은 노래 가사에 포함된 감정 단어를 활용하여 곡의 분위기를 반영한 무대 배경 이미지를 생성한다. 노래 가사를 고려하여 무대 배경 이미지를 생성함으로써 곡의 분위기가 고려된 무대 배경 이미지 생성이 가능하다.

Convolutional Neural Network-based Malware Classification Method utilizing Local Feature-based Global Image (로컬 특징 기반 글로벌 이미지를 사용한 CNN 기반의 악성코드 분류 방법)

  • Jang, Sejun;Sung, Yunsick
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.222-223
    • /
    • 2020
  • 최근 악성코드로 인한 피해가 증가하고 있다. 악성코드는 악성코드가 속한 종류에 따라서 대응하는 방법도 다르기 때문에 악성코드를 종류별로 분류하는 연구도 중요하다. 기존에는 악성코드 시각화 과정을 통해서 생성된 악성코드의 글로벌 이미지를 사용해 악성코드를 각 종류별로 분류한다. 글로벌 이미지를 악성코드로부터 추출한 바이너리 정보를 사용해서 생성한다. 하지만, 글로벌 이미지만을 사용해서 악성코드를 각 종류별로 분류하는 경우 악성코드의 종류별로 중요한 특징을 고려하기 않기 때문에 분류 정확도가 떨어진다. 본 논문에서는 악성코드의 글로벌 이미지에 악성코드의 종류별 특징을 나타내기 위한 로컬 특징 기반 글로벌 이미지를 사용한 악성코드 분류 방법을 제안한다. 첫 번째, 악성 코드로부터 바이너리를 추출하고 추출된 바이너리를 사용해서 글로벌 이미지를 생성한다. 두 번째, 악성 코드로부터 로컬 특징을 추출하고 악성코드의 종류별 핵심 로컬 특징을 단어-역문서 빈도(Term Frequency Inverse Document Frequency, TFIDF) 알고리즘을 사용해 선택한다. 세 번째, 생성된 글로벌 이미지에 악성코드의 패밀리별 핵심 특징을 픽셀화해서 적용한다. 네 번째, 생성된 로컬 특징 기반 글로벌 이미지를 사용해서 컨볼루션 모델을 학습하고, 학습된 컨볼루션 모델을 사용해서 악성코드를 각 종류별로 분류한다.

Color Image Segmentation for Region-Based Image Retrieval (영역기반 이미지 검색을 위한 칼라 이미지 세그멘테이션)

  • Whang, Whan-Kyu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.11-24
    • /
    • 2008
  • Region-based image retrieval techniques, which divide image into similar regions having similar characteristics and examine similarities among divided regions, were proposed to support an efficient low-dimensional color indexing scheme. However, color image segmentation techniques are required additionally. The problem of segmentation is difficult because of a large variety of color and texture. It is known to be difficult to identify image regions containing the same color-texture pattern in natural scenes. In this paper we propose an automatic color image segmentation algorithm. The colors in each image are first quantized to reduce the number of colors. The gray level of image representing the outline edge of image is constructed in terms of Fisher's multi-class linear discriminant on quantized images. The gray level of image is transformed into a binary edge image. The edge showing the outline of the binary edge image links to the nearest edge if disconnected. Finally, the final segmentation image is obtained by merging similar regions. In this paper we design and implement a region-based image retrieval system using the proposed segmentation. A variety of experiments show that the proposed segmentation scheme provides good segmentation results on a variety of images.

Interactive Fractal Image Generator Base on Genetic Algorithm (유전자 알고리즘에 기반한 대화식 프랙탈 이미지 생성기)

  • 이지애;강태원;김미숙
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.437-439
    • /
    • 2003
  • 자연의 진화 과정을 모방한 유전자 알고리즘을 이미지 생성기 분야에 적응하여 무한히 다양한 이미지를 생성하는 것은 가능한 반면, 다음 세대에 생성될 이미지들의 예측은 난해하다. 이러한 배경 하에 본 논문에서는 대화식 프랙탈 이미지 생성기를 구현하여, Direct draw mode를 통해 프랙탈 이미지를 생성하기 위해 사용되는 아핀들을 사용자가 직접 변환함으로써 미세 조정이 가능하도록 한다.

  • PDF

Image generation and classification using GAN-based Semi Supervised Learning (GAN기반의 Semi Supervised Learning을 활용한 이미지 생성 및 분류)

  • Doyoon Jung;Gwangmi Choi;NamHo Kim
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.27-35
    • /
    • 2024
  • This study deals with a method of combining image generation using Semi Supervised Learning based on GAN (Generative Adversarial Network) and image classification using ResNet50. Through this, a new approach was proposed to obtain more accurate and diverse results by integrating image generation and classification. The generator and discriminator are trained to distinguish generated images from actual images, and image classification is performed using ResNet50. In the experimental results, it was confirmed that the quality of the generated images changes depending on the epoch, and through this, we aim to improve the accuracy of industrial accident prediction. In addition, we would like to present an efficient method to improve the quality of image generation and increase the accuracy of image classification through the combination of GAN and ResNet50.