• Title/Summary/Keyword: 이미지유사도

Search Result 881, Processing Time 0.025 seconds

Face Recognition using Eigenfaces and Fuzzy Neural Networks (고유 얼굴과 퍼지 신경망을 이용한 얼굴 인식 기법)

  • 김재협;문영식
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.27-36
    • /
    • 2004
  • Detection and recognition of human faces in images can be considered as an important aspect for applications that involve interaction between human and computer. In this paper, we propose a face recognition method using eigenfaces and fuzzy neural networks. The Principal Components Analysis (PCA) is one of the most successful technique that have been used to recognize faces in images. In this technique the eigenvectors (eigenfaces) and eigenvalues of an image is extracted from a covariance matrix which is constructed form image database. Face recognition is Performed by projecting an unknown image into the subspace spanned by the eigenfaces and by comparing its position in the face space with the positions of known indivisuals. Based on this technique, we propose a new algorithm for face recognition consisting of 5 steps including preprocessing, eigenfaces generation, design of fuzzy membership function, training of neural network, and recognition. First, each face image in the face database is preprocessed and eigenfaces are created. Fuzzy membership degrees are assigned to 135 eigenface weights, and these membership degrees are then inputted to a neural network to be trained. After training, the output value of the neural network is intupreted as the degree of face closeness to each face in the training database.

Immigrants' Micro-Contexts of transnational Migration and Decision-Making Process (외국인 이주자의 미시적 이주배경과 의사결정 과정)

  • Choi, Byung-Doo;Song, Ju-Youn
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.295-318
    • /
    • 2009
  • This paper explores micro-contexts of transnational migration and decision-making process of foreign migrants in Korea with four types, that is, married immigrants, immigrant workers, professional immigrants, and foreign students, analyzing dates of questionaries and interviews. Some findings can be summarized as follows. First, married immigrants and immigrant workers show relative lower level of micro-environments than professional immigrants and foreign students. Secondly, immigrants workers fill closest in geographical contiguity among immigrants' types, while married immigrants recognize more different in cultural comparison than the former. Both immigrants workers and foreign students think living environments of Korea better than other types, but immigrants workers consider relatively higher the level of technology, while foreign students evaluate lower that of education in Korea than other types. Thirdly, married immigrants give a relatively low score to the easiness of immigration, while both immigrant workers and professional immigrants give a high score to the job environment of Korea. Finally, all types of immigrants show a high portion in a self-decision making for international migration, while professional immigrants have much more experiences on visiting other countries than other types, and both married immigrants and foreign students seem to have utilized their networks with family members who live abroad.

  • PDF

Field and remote acquisition of hyperspectral information for classification of riverside area materials (현장 및 원격 초분광 정보 계측을 통한 하천 수변공간 재료 구분)

  • Shin, Jaehyun;Seong, Hoje;Rhee, Dong Sop
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1265-1274
    • /
    • 2021
  • The analysis of hyperspectral characteristics of materials near the South Han River has been conducted using riverside area measurements by drone installed hyperspectral sensors. Each spectrum reflectance of the riverside materials were compared and analyzed which were consisted of grass, concrete, soil, etc. To verify the drone installed hyperspectral measurements, a ground spectrometer was deployed for field measurements and comparisons for the materials. The comparison results showed that the riverside materials had their unique hyperspectral band characteristics, and the field measurements were similar to the remote sensing data. For the classification of the riverside area, the K-means clustering method and SVM classification method were utilized. The supervised SVM method showed accurate classification of the riverside area than the unsupervised K-means method. Using classification and clustering methods, the inherent spectral characteristic for each material was found to classify the riverside materials of hyperspectral images from drones.

A Study on the Factors Influencing the Acceptance of K-pop Short-form Video Created by Chinese Influencers - Focusing on Chinese TikTok Users (중국 인플루언서들의 K-pop 짧은 동영상 수용에 영향을 미치는 요인에 관한 연구 - 중국 '틱톡' 사용자를 중심으로)

  • Liu, QuanQuan;Yu, Sae-Kyung
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.28-36
    • /
    • 2022
  • This study analyzed 284 K-pop song and dance cover short-form videos recreated by Chinese influencers uploaded on TikTok, to explore which reform factors of image similarity, language similarity, the extent of audience participation leading, the extent of lyrics or subtitles translated into Chinese, PPL disclosure, the length of video and the reputation of influencer affected Chinese TikTok audiences' reactions - number of "Likes," "Comments" and "Shares." The results showed that only the "reputation of influencer" was significantly affected the number of "Likes" which estimated as a relatively passive response, but the other factors affected the number of "Comments" and "Shares" significantly which estimated as more active responses. The more an influencer is perceived as not similar to the singer in terms of image the more comments were posted. And the videos expressed in Korean archived more comments and shares than those lyrics or subtitles translated into Chinese. This study is meaningful in that it confirmed the necessity of influencers in the globe diffusion of K-pop, by specifically analyzing the audience's reactions according to the characteristics of UCCs created by local influencers using short-form video platforms.

3D Mesh Reconstruction Technique from Single Image using Deep Learning and Sphere Shape Transformation Method (딥러닝과 구체의 형태 변형 방법을 이용한 단일 이미지에서의 3D Mesh 재구축 기법)

  • Kim, Jeong-Yoon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.160-168
    • /
    • 2022
  • In this paper, we propose a 3D mesh reconstruction method from a single image using deep learning and a sphere shape transformation method. The proposed method has the following originality that is different from the existing method. First, the position of the vertex of the sphere is modified to be very similar to the 3D point cloud of an object through a deep learning network, unlike the existing method of building edges or faces by connecting nearby points. Because 3D point cloud is used, less memory is required and faster operation is possible because only addition operation is performed between offset value at the vertices of the sphere. Second, the 3D mesh is reconstructed by covering the surface information of the sphere on the modified vertices. Even when the distance between the points of the 3D point cloud created by correcting the position of the vertices of the sphere is not constant, it already has the face information of the sphere called face information of the sphere, which indicates whether the points are connected or not, thereby preventing simplification or loss of expression. can do. In order to evaluate the objective reliability of the proposed method, the experiment was conducted in the same way as in the comparative papers using the ShapeNet dataset, which is an open standard dataset. As a result, the IoU value of the method proposed in this paper was 0.581, and the chamfer distance value was It was calculated as 0.212. The higher the IoU value and the lower the chamfer distance value, the better the results. Therefore, the efficiency of the 3D mesh reconstruction was demonstrated compared to the methods published in other papers.

A Study on the Analysis of the Congestion Level of Tourist Sites and Visitors Characteristics Using SNS Data (SNS 데이터를 활용한 관광지 혼잡도 및 방문자 특성 분석에 관한 연구)

  • Lee, Sang Hoon;Kim, Su-Yeon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.5
    • /
    • pp.13-24
    • /
    • 2022
  • SNS has become a very close service to our daily life. As marketing is done through SNS, places often called hot places are created, and users are flocking to these places. However, it is often crowded with a large number of people in a short period of time, resulting in a negative experience for both visitors and service providers. In order to improve this problem, it is necessary to recognize the congestion level, but the method to determine the congestion level in a specific area at an individual level is very limited. Therefore, in this study, we tried to propose a system that can identify the congestion level information and the characteristics of visitors to a specific tourist destination by using the data on the SNS. For this purpose, posting data uploaded by users and image analysis were used, and the performance of the proposed system was verified using the Naver DataLab system. As a result of comparative verification by selecting three places by type of tourist destination, the results calculated in this study and the congestion level provided by DataLab were found to be similar. In particular, this study is meaningful in that it provides a degree of congestion based on real data of users that is not dependent on a specific company or service.

Preprocessing Technique for Malicious Comments Detection Considering the Form of Comments Used in the Online Community (온라인 커뮤니티에서 사용되는 댓글의 형태를 고려한 악플 탐지를 위한 전처리 기법)

  • Kim Hae Soo;Kim Mi Hui
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.3
    • /
    • pp.103-110
    • /
    • 2023
  • With the spread of the Internet, anonymous communities emerged along with the activation of communities for communication between people, and many users are doing harm to others, such as posting aggressive posts and leaving comments using anonymity. In the past, administrators directly checked posts and comments, then deleted and blocked them, but as the number of community users increased, they reached a level that managers could not continue to monitor. Initially, word filtering techniques were used to prevent malicious writing from being posted in a form that could not post or comment if a specific word was included, but they avoided filtering in a bypassed form, such as using similar words. As a way to solve this problem, deep learning was used to monitor posts posted by users in real-time, but recently, the community uses words that can only be understood by the community or from a human perspective, not from a general Korean word. There are various types and forms of characters, making it difficult to learn everything in the artificial intelligence model. Therefore, in this paper, we proposes a preprocessing technique in which each character of a sentence is imaged using a CNN model that learns the consonants, vowel and spacing images of Korean word and converts characters that can only be understood from a human perspective into characters predicted by the CNN model. As a result of the experiment, it was confirmed that the performance of the LSTM, BiLSTM and CNN-BiLSTM models increased by 3.2%, 3.3%, and 4.88%, respectively, through the proposed preprocessing technique.

Motion Vector Based Overlay Metrology Algorithm for Wafer Alignment (웨이퍼 정렬을 위한 움직임 벡터 기반의 오버레이 계측 알고리즘 )

  • Lee Hyun Chul;Woo Ho Sung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.3
    • /
    • pp.141-148
    • /
    • 2023
  • Accurate overlay metrology is essential to achieve high yields of semiconductor products. Overlay metrology performance is greatly affected by overlay target design and measurement method. Therefore, in order to improve the performance of the overlay target, measurement methods applicable to various targets are required. In this study, we propose a new algorithm that can measure image-based overlay. The proposed measurement algorithm can estimate the sub-pixel position by using a motion vector. The motion vector may estimate the position of the sub-pixel unit by applying a quadratic equation model through polynomial expansion using pixels in the selected region. The measurement method using the motion vector can calculate the stacking error in all directions at once, unlike the existing correlation coefficient-based measurement method that calculates the stacking error on the X-axis and the Y-axis, respectively. Therefore, more accurate overlay measurement is possible by reflecting the relationship between the X-axis and the Y-axis. However, since the amount of computation is increased compared to the existing correlation coefficient-based algorithm, more computation time may be required. The purpose of this study is not to present an algorithm improved over the existing method, but to suggest a direction for a new measurement method. Through the experimental results, it was confirmed that measurement results similar to those of the existing method could be obtained.

A Study on Webtoon Background Image Generation Using CartoonGAN Algorithm (CartoonGAN 알고리즘을 이용한 웹툰(Webtoon) 배경 이미지 생성에 관한 연구)

  • Saekyu Oh;Juyoung Kang
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.173-185
    • /
    • 2022
  • Nowadays, Korean webtoons are leading the global digital comic market. Webtoons are being serviced in various languages around the world, and dramas or movies produced with Webtoons' IP (Intellectual Property Rights) have become a big hit, and more and more webtoons are being visualized. However, with the success of these webtoons, the working environment of webtoon creators is emerging as an important issue. According to the 2021 Cartoon User Survey, webtoon creators spend 10.5 hours a day on creative activities on average. Creators have to draw large amount of pictures every week, and competition among webtoons is getting fiercer, and the amount of paintings that creators have to draw per episode is increasing. Therefore, this study proposes to generate webtoon background images using deep learning algorithms and use them for webtoon production. The main character in webtoon is an area that needs much of the originality of the creator, but the background picture is relatively repetitive and does not require originality, so it can be useful for webtoon production if it can create a background picture similar to the creator's drawing style. Background generation uses CycleGAN, which shows good performance in image-to-image translation, and CartoonGAN, which is specialized in the Cartoon style image generation. This deep learning-based image generation is expected to shorten the working hours of creators in an excessive work environment and contribute to the convergence of webtoons and technologies.

Radar-based rainfall prediction using generative adversarial network (적대적 생성 신경망을 이용한 레이더 기반 초단시간 강우예측)

  • Yoon, Seongsim;Shin, Hongjoon;Heo, Jae-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.471-484
    • /
    • 2023
  • Deep learning models based on generative adversarial neural networks are specialized in generating new information based on learned information. The deep generative models (DGMR) model developed by Google DeepMind is an generative adversarial neural network model that generates predictive radar images by learning complex patterns and relationships in large-scale radar image data. In this study, the DGMR model was trained using radar rainfall observation data from the Ministry of Environment, and rainfall prediction was performed using an generative adversarial neural network for a heavy rainfall case in August 2021, and the accuracy was compared with existing prediction techniques. The DGMR generally resembled the observed rainfall in terms of rainfall distribution in the first 60 minutes, but tended to predict a continuous development of rainfall in cases where strong rainfall occurred over the entire area. Statistical evaluation also showed that the DGMR method is an effective rainfall prediction method compared to other methods, with a critical success index of 0.57 to 0.79 and a mean absolute error of 0.57 to 1.36 mm in 1 hour advance prediction. However, the lack of diversity in the generated results sometimes reduces the prediction accuracy, so it is necessary to improve the diversity and to supplement it with rainfall data predicted by a physics-based numerical forecast model to improve the accuracy of the forecast for more than 2 hours in advance.