DOI QR코드

DOI QR Code

Field and remote acquisition of hyperspectral information for classification of riverside area materials

현장 및 원격 초분광 정보 계측을 통한 하천 수변공간 재료 구분

  • Shin, Jaehyun (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Seong, Hoje (Planning and Coordination Department, Korea Institute of Civil Engineering and Building Technology) ;
  • Rhee, Dong Sop (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 신재현 (한국건설기술연구원 수자원하천연구본부) ;
  • 성호제 (한국건설기술연구원 기획조정본부) ;
  • 이동섭 (한국건설기술연구원 수자원하천연구본부)
  • Received : 2021.08.30
  • Accepted : 2021.11.02
  • Published : 2021.12.31

Abstract

The analysis of hyperspectral characteristics of materials near the South Han River has been conducted using riverside area measurements by drone installed hyperspectral sensors. Each spectrum reflectance of the riverside materials were compared and analyzed which were consisted of grass, concrete, soil, etc. To verify the drone installed hyperspectral measurements, a ground spectrometer was deployed for field measurements and comparisons for the materials. The comparison results showed that the riverside materials had their unique hyperspectral band characteristics, and the field measurements were similar to the remote sensing data. For the classification of the riverside area, the K-means clustering method and SVM classification method were utilized. The supervised SVM method showed accurate classification of the riverside area than the unsupervised K-means method. Using classification and clustering methods, the inherent spectral characteristic for each material was found to classify the riverside materials of hyperspectral images from drones.

본 연구에서는 남한강에서 드론에 탑재된 초분광 센서를 활용하여 수변공간을 측정한 후, 초분광 분석을 통하여 재료를 구분하였다. 식생, 콘크리트, 흙 등의 재료를 대상으로 구분하였으며, 각각 재료의 고유한 분광반사 곡선의 특성을 비교 및 분석하였다. 드론으로 측정한 초분광 자료를 검증하기 위하여 지상분광측정기를 사용하여 현장조사를 실시하고 각 재료를 비교하였다. 분석 비교 결과 각 재료별로 고유한 유형의 파장대가 발생하는 것을 확인하였고 드론으로 수행한 원격 탐사 결과가 지상분광측정 결과와 유사하다는 결론을 내릴 수 있었다. 수변 공간의 분류를 위하여 K-means 군집화 기법과 SVM 분류 기법을 활용하여 측정 구역의 공간 분류를 수행할 수 있었다. 비교 결과, 지도학습인 SVM 분류 기법의 수변공간 분류가 비지도학습인 K-means 기법과 비교하여 상세한 구분이 수행되었음을 확인할 수 있었다. 이와 같이 분류 및 군집 분석 기법을 활용하여 각 수변공간 재료의 고유 분광 특성을 활용하여 측정되는 드론탑재 초분광 이미지의 각 데이터를 분류할 수 있게 되었다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었습니다(과제번호 21DPIW -C153746-03).

References

  1. Asner, G.P., and Martin, R.E. (2009). "Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests." Frontiers in Ecology and the Environment, Vol. 7, No. 5, pp. 269-276. https://doi.org/10.1890/070152
  2. Clark, R.N., Swayze, G.A., Wise, R.A., Livo, K.E., Hoefen, T.M., Kokaly, R.F., and Sutley, S.J. (2007). USGS digital spectral library splib06a (No. 231). US Geological Survey, Reston, VA, U.S.
  3. Drake, N.A., Mackin, S., and Settle, J.J. (1999). "Mapping vegetation, soils, and geology in semiarid shrublands using spectral matching and mixture modeling of SWIR AVIRIS imagery." Remote Sensing of Environment, Vol. 68, No. 1, pp. 12-25. https://doi.org/10.1016/S0034-4257(98)00097-2
  4. Goetz, A.F. (2009). "Three decades of hyperspectral remote sensing of the Earth: A personal view." Remote Sensing of Environment, Vol. 113, pp. S5-S16. https://doi.org/10.1016/j.rse.2007.12.014
  5. Ishida, T., Kurihara, J., Viray, F.A., Namuco, S.B., Paringit, E.C., Perez, G.J., Takahashi, Y., and Marciano Jr, J.J. (2018). "A novel approach for vegetation classification using UAV-based hyperspectral imaging." Computers and Electronics in Agriculture, Vol. 144, pp. 80-85. https://doi.org/10.1016/j.compag.2017.11.027
  6. Jeong, J., and Youn, H., (2020). "Region of Interest (ROI) selection of land cover using SVM cross validation." Journal of Cadastre and Land InformatiX, Vol. 50, No. 1, pp. 75-85. https://doi.org/10.22640/LXSIRI.2020.50.1.75
  7. Kang, J., Lee, C., Kim, J., Ko, D., and Kim, J. (2019). "An analysis of spectral characteristic information on the water level changes and bed materials." Ecology and Resilient Infrastructure, Vol. 6, No. 4, pp. 243-249. https://doi.org/10.17820/eri.2019.6.4.243
  8. Kokaly, R.F., Asner, G.P., Ollinger, S.V., Martin, M.E., and Wessman, C.A. (2009). "Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies." Remote Sensing of Environment, Vol. 113, pp. S78-S91. https://doi.org/10.1016/j.rse.2008.10.018
  9. Kwon, S., Seo, I. W., and Baek, D. (2021). "Development of suspended solid concentration measurement technique based on multi-spectral satellite imagery in Nakdong River using machine learning model." Journal of Korea Water Resources Association, Vol. 54, No. 2, pp. 121-133. https://doi.org/10.3741/JKWRA.2021.54.2.121
  10. Legleiter, C.J., and Harrison, L.R. (2019). "Remote sensing of river bathymetry: Evaluating a range of sensors, platforms, and algorithms on the upper Sacramento River, California, USA." Water Resources Research, Vol. 55, No. 3, pp. 2142-2169. https://doi.org/10.1029/2018wr023586
  11. Marcus, W.A., and Fonstad, M.A. (2010). "Remote sensing of rivers: The emergence of a subdiscipline in the river sciences." Earth Surface Processes and Landforms, Vol. 35, No. 15, pp. 1867-1872. https://doi.org/10.1002/esp.2094
  12. Mather, P., and Tso, B. (2016). Classification methods for remotely sensed data. CRC press, Boca Ranton, FL, U.S.
  13. Pal, M., and Mather, P.M. (2006). "Some issues in the classification of DAIS hyperspectral data." International Journal of Remote Sensing, Vol. 27, No. 14, pp. 2895-2916. https://doi.org/10.1080/01431160500185227
  14. Peterson, D.L., Aber, J.D., Matson, P.A., Card, D.H., Swanberg, N.A., Wessman, C.A., and Spanner, M.A. (1988). "Remote sensing of forest canopy and leaf biochemical contents." Remote Sensing of Environment, Vol. 24, pp. 85-108. https://doi.org/10.1016/0034-4257(88)90007-7
  15. Schmid, T., Koch, M., Gumuzzio, J., and Mather, P.M. (2004). "A spectral library for a semi-arid wetland and its application to studies of wetland degradation using hyperspectral and multi-spectral data." International Journal of Remote Sensing, Vol. 25, No. 13, pp. 2485-2496. https://doi.org/10.1080/0143116031000117001
  16. Stratoulias, D., Balzter, H., Zlinszky, A., and Toth, V.R. (2015). "Assessment of ecophysiology of lake shore reed vegetation based on chlorophyll fluorescence, field spectroscopy and hyperspectral airborne imagery." Remote Sensing of Environment, Vol. 157, pp. 72-84. https://doi.org/10.1016/j.rse.2014.05.021
  17. Umar, M., Rhoads, B.L., and Greenberg, J.A. (2018). "Use of multi-spectral satellite remote sensing to assess mixing of suspended sediment downstream of large river confluences." Journal of Hydrology, Vol. 556, pp. 325-338. https://doi.org/10.1016/j.jhydrol.2017.11.026
  18. Van der Meer, F.D., Van der Werff, H.M., Van Ruitenbeek, F.J., Hecker, C.A., Bakker, W.H., Noomen, M.F., Van der Meijde, M., Carranza, E.J., Boudewijn, J., and Woldai, T. (2012). "Multi-and hyperspectral geologic remote sensing: A review." International Journal of Applied Earth Observation and Geoinformation, Vol. 14, No. 1, pp. 112-128. https://doi.org/10.1016/j.jag.2011.08.002
  19. Vapnik, V., Golowich, S.E., and Smola, A., 1997. "Support vector method for function approximation, regression estimation, and signal processing." Advances in Neural Information Processing Systems 9: Proceedings of the 1996 Conference. The MIT Press, Cambridge, MA, U.S., pp. 281-287.