본 연구에서는 정보원천 신뢰도 이론(source credibility theory)을 기반으로 비개인화된(non-personalized) 추천시스템의 일종인 평판시스템(reputation system)을 위한 평판 순위결정기법을 제안하고, 이러닝 콘텐츠 서비스에 적합한 평판시스템 모형을 제시하였다. 정보원천 신뢰도 요인 중 온라인 구전에 적합한 두 가지 요인(expertise, co-orientation)을 기반으로 사용자 평판정보를 암묵적으로 추출하는 기법을 제안하였다. 즉, 사용자의 과거 이러닝 콘텐츠 평가 정보로부터 사용자의 두 가지 신뢰도 요인을 자동적으로 추출하는 방법을 정의하고, 사용자중 높은 신뢰도를 가진 소수 평가자의 정보만을 가지고 전체 사용자의 콘텐츠 평판정보를 효과적으로 예측할 수 있는 방법을 제안하였다. 콘텐츠 평판정보를 예측하는 단계에 있어, 정보원천 신뢰도 이론이 반영된 수정된 협업 필터링(collaborative filtering) 기법을 적용하였다. 한편, 다양한 평판기법들과의 성능 비교실험을 통해, 제안하는 평판시스템 모형이 명시적인 사용자 평판정보가 부족한 기업대 소비자간(B2C) 이러닝 콘텐츠 전자상거래 사이트에 적합함을 검증하였다.
소셜 네트워크 서비스의 부각과 다매체 환경에서의 사용자 참여 확대와 같은 최근 IT 기술 환경의 변화로 이러닝 시스템 역시 다양한 환경에서 변화하고 있다. 메타데이터는 시스템 간의 상호운용성을 위한 데이터의 규약이며, 이러닝 메타데이터는 국내외 기판에 의해 표준화가 이루어지고 있으나, 주변 환경의 다양한 변화를 고려하는 메타데이터 요소의 제안이 요구되는 상황이다. 본 논문에서는 지능형 학습 시스템을 위한 메타데이터 모형을 분석 및 설계하는 방법을 연구 제안하고, 표준 메타데이터인 KEM 3.0을 기반으로 향후 필요할 것으로 예상되는 메타데이터 요소의 요구사항을 도출하였다. 도출된 요구사항을 바탕으로 요구사항을 중요도에 따라 분류할 수 있는 카노 모형에 따라 3-Layer 모델로 설계하였다. 향후 본 논문의 모형 설계를 기반으로 이러닝 기술 환경의 변화를 반영한 지능형 학습 시스템을 개발하여 국제적 표준화로 발전되기를 기대한다.
최근 산업 전반에 걸쳐 가상세계와 현실세계, 방송과 통신, IT 기술과 전통산업 등 다양한 분야에서 융합연구가 진행되고 있다. 그리고 교육 분야에서는 주입식 교육을 탈피하는 창의력 중심으로의 교육 패러다임이 변하고 있다. 또한, 자기주도형 미래 인재를 육성하기 위한 고품질의 인터랙티브한 교육콘텐츠 기술이 요구되고 있는 실정이다. 이미 스마트 폰의 시장규모가 PC를 추월하고 있으며, 스마트 디바이스와 이러닝 신기술이 융합된 새로운 형태의 교육시스템으로 '스마트 러닝'이라는 새로운 서비스가 나타나고 있다. 본 논문에서는 직접 개발한 콘텐츠 저작 애플리케이션과 웹 사이트, 클라우드 환경을 기반으로 학습자 패턴 수집 및 분석을 하고자 한다. 이러한 정보를 활용하여 학습자의 취향에 맞는 적절한 콘텐츠를 추천해주는 큐레이션 서비스 제공 방안에 대해 연구하였다.
이 연구의 목적은 모바일 학습환경에서 교수실재감, 인지적 실재감, 사회적 실재감, 서비스 질, 학습몰입과 학습 만족도 간의 구조적인 관계를 규명하는데 있다. 설문조사는 국내 W 디지털대학교에서 모바일서비스를 사용하는 학습자 255명을 대상으로 구조방정식 방법을 사용하여 분석하였다. 연구결과 인지적 실재감, 사회적 실재감, 서비스 질은 학습 몰입에 영향을 미치는 것으로 나타났고 인지적 실재감, 서비스 질, 학습몰입은 학습 만족도에 영향을 미치는 것으로 나타났다. 본 연구에서는 연구결과를 토대로 모바일러닝 환경에서 학습몰입과 학습만족도를 높이기 위한 전략을 제시하였다.
최근 빅데이터 기술이 다양한 산업과 접목되고 있다. 그 중 고객 이탈 방지가 최우선인 통신사들 또한 예외가 아닐 수 없다. 이에 본 논문은 통신사 데이터에 머신러닝 알고리즘을 접목. 이탈 예측과 데이터 추이를 분석하고, 이를 시각화 하여 일목요연하게 표출하는 과정을 제공함으로서 통신사의 고객 유치 정책을 위한 토대를 마련할 것이다.
인공지능 관련 기술의 발달로 다양한 분야에서 인공지능 활용에 대한 관심이 고조되고 있으며 전문영역에서도 기계학습 기법을 활용한 연구들이 활발하게 이루어지고 있다. 특허청에서는 분야별 전문지식을 가진 분류담당자가 출원되는 모든 특허에 국제특허분류코드(이하 IPC) 부여 작업을 수행하고 있다. IPC 분류와 같은 전문적인 업무영역에서 딥러닝을 활용한 자동 IPC 분류 서비스를 제공하기 위해서는 기계학습을 이용하는 분류 모델에 분야별 전문지식을 직관적으로 반영하는 것이 필요하다. 이를 위해 본 연구에서는 딥러닝 기반의 IPC 분류 모델과 전문지식이 반영된 분류별 어휘사전을 활용한 규칙기반 분류 모델을 병행하여 특허문서의 IPC분류를 자동으로 추천하는 방법을 제안한다.
본 연구는 아직 초기 단계의 논의에 그치고 있는 UX 디자인 과정에서의 머신러닝 활용 현황에 대해 고찰하고 향후 디자이너가 UX 디자인 과정에서 머신러닝을 활용할 수 있는 방식에 대해 논의하고자 한다. 본 연구는 머신러닝 기반의 제품 및 서비스를 위한 디자인 방법 연구와는 구별되는 것으로 머신러닝을 디자인 과정 속에 이용해서 디자이너가 얻을 수 있는 가치에 대한 논의에 목적을 둔다. 이를 위해 문헌연구와 사례조사를 통해 디자인 방법의 종류를 1) UX 디자인 중심 ML 융합, 2) ML 시스템 중심 UX융합, 그리고 3) UX-ML 매치메이킹 방법에 대해 정리하고 분석하였다. 이후 실제 워크숍에서 디자인 전공자들이 실질적으로 활용가능한 1)과 3)의 방법을 시행하면서 각 방법의 과정, 장단점을 세부적으로 파악하였고, 이를 통해 머신러닝을 UX 디자인 과정에 접목하는 구체적 방법을 제시하였다.
최근 비정상적인 네트워크 활동 감지 및 네트워크 서비스 프로비저닝과 같은 다양한 분야에서 응용되는 네트워크 트래픽 예측 기술이 네트워크 통신 문제에 의한 트래픽의 결측 및 네트워크 유저의 불규칙한 활동에 의한 비선형 특성 때문에 발생하는 성능 저하를 극복하기 위해 딥러닝 신경망에 대한 연구가 활성화되고 있다. 이 딥러닝 신경망 중 시계열 딥러닝 신경망은 단기 네트워크 트래픽 볼륨을 예측할 때 낮은 오류율을 보인다. 하지만, 시계열 딥러닝 신경망은 기울기 소멸 및 폭발과 같은 비선형성, 다중 계절성 및 장기적 의존성 문제와 같은 한계를 보여준다. 이 논문에서는 계절성 임베딩을 고려한 주의 신경망 기반 트래픽 예측 기법을 제안한다. 제안하는 기법은 STL 분해 기법을 통해 분해된 트래픽 트랜드, 계절성, 잔차를 이용하여 일별 및 주별 계절성을 임베딩하고 이를 주의 신경망을 기반으로 향후 트래픽을 예측한다.
본 연구는 도서관의 이러닝 플랫폼 구축을 위한 주요 학습 내용과 기능 및 활성화 방안을 제안하고자 문헌연구와 사례분석 및 전문가 조사를 진행하였다. 문헌연구에서 도서관이 이러닝 생태계에 있는 이용자를 위해 질 높은 온라인 교육을 제공해야 함을 알 수 있었으며 선행연구를 통해 도서관의 이러닝 플랫폼 분석을 위한 학습기능 분석 도구를 도출하였다. 이를 기반으로 국내외 도서관 이러닝 플랫폼들의 학습 내용과 기능 및 특징을 분석하였으며 전문가 설문 조사 및 인터뷰를 수행하였다. 분석결과, 도서관의 지속 가능한 이러닝 서비스를 위해 학습 과정과 기술을 효과적으로 적용할 수 있는 플랫폼의 구축이 필수적이며 제공해야 할 학습 내용은 관 종에 상관없이 공통적으로 독서교육, 정보활용교육, 도서관이용교육, IT 최신기술 소개 등 도서관교육의 특성을 나타내는 주제가 도출되었다. 주요한 학습기능으로는 학습유형 중 영상강의와 실시간 수업을 진행할 수 있어야 하며 학습자료와 이용 가이드를 제공할 수 있는 학습활동지원 기능, 교육내용을 저장하고 공유할 수 있는 클라우드 플랫폼 지원 기능, 생애주기 맞춤형 콘텐츠를 제공할 수 있는 개인화 환경 지원 기능 등을 제시하였다. 또한, 도서관 사서의 기술력 향상을 위한 재교육, 이러닝 관련 팀의 구성과 전문사서의 도입을 제안하였다.
본 연구는 대표 눈높이 러닝센터의 사업화 사례 분석을 통해 교육 서비스 프랜차이즈 기업의 자기주도 학습관 사업화에 대한 개념을 정립하는데 목적이 있다. 대교 눈높이 러닝센터는 자기주도 학습관과 관련된 프랜차이즈 사업화의 선두주자로 해당 산업 내에서 이러한 성공을 이끈 경영방식을 유지하고 있다.대교가 성공적으로 러닝센터 사업화를 이룰 수 있던 것은 목표관리, 학습관리, 그리고 환경관리 등의 3가지 요인을 기반으로 한 교육서비스를 제공하고 있기 때문이다. 첫째, 대교는 목표관리로 꿈과 학습목표 및 학습실천 계획을 세우고 실천할 수 있는 분위기를 조성함으로써 자기주도적 태도를 형성하는데 도움을 준다. 또한, 대교는 학습 성향검사를 통한 효율적인 학습방법을 탐색하고 도모하게 할 수 있는 정보를 제공한다. 그리고 대교는 지속적인 학습 동기부여를 위한 다양한 행사를 실시하고 있다. 둘째는 학습관리로서, 대교는 30여 년 노하우의 눈높이 교재를 통한 체계적인 기초학력을 정착하는데 도움을 주고, 학습자 중심의 개인별 맞춤 솔루션 제공 및 정확한 진도를 관리하며, 출결시스템을 통한 학습시간 관리 및 1:1 학습지도를 통한 학습실천 관리를 제공한다. 셋째는 환경관리로서, 대교는 이를 위해 과목별 담당교사 및 집중력 있는 시설을 통해 자기주도 학습을 위한 공부환경을 조성해주고, 멀티미디어 시스템을 통한 LAB학습, 동영상 학습을 통한 다양하고 재미있는 공부공간을 제공해준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.